Cancer multi-omics-based differential expression analysis and prognostic potential of identified hub targets of myco-metabolites for breast carcinoma and lung carcinoma

IF 3.4 Q2 PHARMACOLOGY & PHARMACY Future Journal of Pharmaceutical Sciences Pub Date : 2025-02-05 DOI:10.1186/s43094-025-00768-9
Singh Shreya, Debadatta Mohapatra, Gaurav Gopal Naik, Pooja Kathait, Soki Malang, Pradeep Patel,  Shambhavi, Gulzar Alam, Alakh N. Sahu
{"title":"Cancer multi-omics-based differential expression analysis and prognostic potential of identified hub targets of myco-metabolites for breast carcinoma and lung carcinoma","authors":"Singh Shreya,&nbsp;Debadatta Mohapatra,&nbsp;Gaurav Gopal Naik,&nbsp;Pooja Kathait,&nbsp;Soki Malang,&nbsp;Pradeep Patel,&nbsp; Shambhavi,&nbsp;Gulzar Alam,&nbsp;Alakh N. Sahu","doi":"10.1186/s43094-025-00768-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Breast carcinoma (BC) and lung carcinoma (LC) have the highest incidence and mortality rates worldwide. In prior work, studied sample hub targets contributing to anticancer potential against BC and LC were identified through network pharmacology. In the present work, web servers UALCAN, GEPIA2, and KM plotter were used to explore the genomic and proteomic expression of these hub targets, along with their prognosis potential in BC and LC.</p><h3>Results</h3><p>Differential hub targets SRC, MAPK3, PTPN11, JAK2, ESR1, and HAP900A1 for BC and PTPN11, JAK2, ESR1, EGFR, and MAPK3 for LC, showed good prognostic potentials. Collectively, PTPN11, JAK2, and ESR1 were overlapped differential expressed hub targets involved in the significantly good prognosis of both carcinoma.</p><h3>Conclusion</h3><p>These differentially expressed hub targets may be taken into account for future BC and LC treatments due to their strong prognostic potential.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00768-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00768-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Breast carcinoma (BC) and lung carcinoma (LC) have the highest incidence and mortality rates worldwide. In prior work, studied sample hub targets contributing to anticancer potential against BC and LC were identified through network pharmacology. In the present work, web servers UALCAN, GEPIA2, and KM plotter were used to explore the genomic and proteomic expression of these hub targets, along with their prognosis potential in BC and LC.

Results

Differential hub targets SRC, MAPK3, PTPN11, JAK2, ESR1, and HAP900A1 for BC and PTPN11, JAK2, ESR1, EGFR, and MAPK3 for LC, showed good prognostic potentials. Collectively, PTPN11, JAK2, and ESR1 were overlapped differential expressed hub targets involved in the significantly good prognosis of both carcinoma.

Conclusion

These differentially expressed hub targets may be taken into account for future BC and LC treatments due to their strong prognostic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
期刊最新文献
Cancer multi-omics-based differential expression analysis and prognostic potential of identified hub targets of myco-metabolites for breast carcinoma and lung carcinoma Blue applicability grade index assessment and response surface modelling to synchronous determination of metformin hydrochloride, vildagliptin and dapagliflozin propanediol monohydrate by HPTLC method HSP90 inhibitors promote cell death by degrading Met and BCR::ABL1 in both imatinib-resistant and -sensitive chronic myeloid leukemia cells Hepatoprotective potential of Chrysin in a rat model of isoniazid- and rifampicin-induced hepatic injury: suppression of matrix metalloproteinase and transforming growth factor β Natural products targeting ubiquitination to combat kidney fibrosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1