Optimizing cluster head selection for energy efficiency in wireless sensor networks: A hybrid algorithm combining grey wolf and enhanced sunflower optimization

IF 0.5 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2024-08-11 DOI:10.1002/itl2.567
Indra Kumar Shah, Neha Singh Rathaur, Yogendra Singh Dohare, Tanmoy Maity
{"title":"Optimizing cluster head selection for energy efficiency in wireless sensor networks: A hybrid algorithm combining grey wolf and enhanced sunflower optimization","authors":"Indra Kumar Shah,&nbsp;Neha Singh Rathaur,&nbsp;Yogendra Singh Dohare,&nbsp;Tanmoy Maity","doi":"10.1002/itl2.567","DOIUrl":null,"url":null,"abstract":"<p>In this letter, we introduce a novel cluster head selection algorithm namely mixed grey wolf and improved sunflower optimization algorithm (MGWISFO). This algorithm leverages both energy requirements and inter-node distances to select cluster heads (CH). Within this algorithm, the Grey Wolf Optimizer facilitates exploration, offering a broader search, while the improved Sunflower Optimization focuses on exploitation, delivering a narrower search. This balance between exploration and exploitation leads to the identification of the optimal CH node, thereby enhancing network performance. To validate its effectiveness, the proposed algorithm is benchmarked against existing strategies such as particle swarm optimization (PSO), genetic algorithm (GA), grey wolf optimization (GWO), and sunflower optimization (SFO) across various performance parameters including throughput, the number of live and dead nodes, and residual energy. Simulation results unequivocally establish the unparalleled performance of our proposed algorithm, surpassing the capabilities of existing algorithms.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we introduce a novel cluster head selection algorithm namely mixed grey wolf and improved sunflower optimization algorithm (MGWISFO). This algorithm leverages both energy requirements and inter-node distances to select cluster heads (CH). Within this algorithm, the Grey Wolf Optimizer facilitates exploration, offering a broader search, while the improved Sunflower Optimization focuses on exploitation, delivering a narrower search. This balance between exploration and exploitation leads to the identification of the optimal CH node, thereby enhancing network performance. To validate its effectiveness, the proposed algorithm is benchmarked against existing strategies such as particle swarm optimization (PSO), genetic algorithm (GA), grey wolf optimization (GWO), and sunflower optimization (SFO) across various performance parameters including throughput, the number of live and dead nodes, and residual energy. Simulation results unequivocally establish the unparalleled performance of our proposed algorithm, surpassing the capabilities of existing algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中簇头选择的能效优化:一种结合灰狼和增强向日葵优化的混合算法
在这封信中,我们介绍了一种新型簇头选择算法,即混合灰狼和改进向日葵优化算法(MGWISFO)。该算法利用能量需求和节点间距离来选择簇头(CH)。在该算法中,灰狼优化器促进探索,提供更广泛的搜索,而改进的向日葵优化器侧重于开发,提供更窄的搜索。这种探索和利用之间的平衡可确定最佳 CH 节点,从而提高网络性能。为了验证该算法的有效性,我们将该算法与粒子群优化(PSO)、遗传算法(GA)、灰狼优化(GWO)和向日葵优化(SFO)等现有策略进行了基准测试,测试的性能参数包括吞吐量、活节点和死节点数量以及剩余能量。仿真结果明确证实了我们提出的算法具有无与伦比的性能,超越了现有算法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Large Transformer Model With Haar Wavelet Transform for Channel Estimation in Massive MIMO Systems Toward Industry 5.0: Evaluating Multimodal Virtual Human Interaction for Smart Healthcare in Simulated VR Environments Consumer Price Index Forecasting Based on Federated Learning and a Hybrid Deep Neural Network for Economic Activity Evaluation An AI-Based Wearable Computing System for Personalized Athletic Fatigue Analysis and Optimization via 6G Networks Real-Time Student Abnormal Behavior Detection Based on Distributed Edge Collaboration and Multi-View Fusion Under Classroom Scene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1