A new iron recovery and dephosphorization approach from unroasted high-phosphorus oolitic hematite ore via a facile chemical beneficiation process

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-09-29 DOI:10.1002/apj.3159
Minghui Gong, Likun Gao, Huixin Dai, Xiaosong Tian, Fei He, Mei Liu, Bing Rao, Qingsong Zhang, Zhaobo Yin
{"title":"A new iron recovery and dephosphorization approach from unroasted high-phosphorus oolitic hematite ore via a facile chemical beneficiation process","authors":"Minghui Gong,&nbsp;Likun Gao,&nbsp;Huixin Dai,&nbsp;Xiaosong Tian,&nbsp;Fei He,&nbsp;Mei Liu,&nbsp;Bing Rao,&nbsp;Qingsong Zhang,&nbsp;Zhaobo Yin","doi":"10.1002/apj.3159","DOIUrl":null,"url":null,"abstract":"<p>Despite the abundance of scientific reports on the treatment of oolitic hematite, it still constitutes a global challenge. The distinctive oolitic structure within the ore is regarded as the primary factor causing the difficulty in the beneficiation of oolitic hematite ore. The objective of this study is to devise an effective approach to tackle the issue of beneficiation of oolitic hematite ore, thereby facilitating the utilization of oolitic hematite ore, which is widely abundant worldwide. Based on the Pourbaix diagram (E<sub>h</sub>-pH) of the Al-Si-H<sub>2</sub>O system, an alkaline leaching process for eliminating impurities from unroasted oolitic hematite using NaOH solution as the leaching agent was proposed. The optimal parameters were determined as a temperature of 250°C, a NaOH concentration of 16 mol/L, a liquid-to-solid ratio of 4 mL/g, and a reaction time of approximately 2 h. Around 54% of phosphorus (P), 21% of Al<sub>2</sub>O<sub>3</sub>, and 61% of SiO<sub>2</sub> can be preliminarily removed from unroasted oolitic hematite ore. Through further dephosphorization with dilute sulfuric acid at room temperature, a high-quality Fe concentrate with 63.3% Fe, 0.04% P, and a Fe recovery rate of 96% was obtained. The alkali can be readily regenerated by adding lime to the leaching solution, and the regenerated alkali has a leaching effect comparable to that of the fresh leaching solution. The recycling and utilization of alkaline leaching agents minimize production costs to the greatest extent possible. Mechanical studies have discovered that intact oolites undergo complete dissociation under alkaline leaching, enabling the leaching solution to permeate into the particles and thereby deeply eliminate impurities. The novel method has accomplished efficient processing of oolitic hematite and a reasonable control of production costs during processing, which is significant for expanding the reserves of iron ore resources.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the abundance of scientific reports on the treatment of oolitic hematite, it still constitutes a global challenge. The distinctive oolitic structure within the ore is regarded as the primary factor causing the difficulty in the beneficiation of oolitic hematite ore. The objective of this study is to devise an effective approach to tackle the issue of beneficiation of oolitic hematite ore, thereby facilitating the utilization of oolitic hematite ore, which is widely abundant worldwide. Based on the Pourbaix diagram (Eh-pH) of the Al-Si-H2O system, an alkaline leaching process for eliminating impurities from unroasted oolitic hematite using NaOH solution as the leaching agent was proposed. The optimal parameters were determined as a temperature of 250°C, a NaOH concentration of 16 mol/L, a liquid-to-solid ratio of 4 mL/g, and a reaction time of approximately 2 h. Around 54% of phosphorus (P), 21% of Al2O3, and 61% of SiO2 can be preliminarily removed from unroasted oolitic hematite ore. Through further dephosphorization with dilute sulfuric acid at room temperature, a high-quality Fe concentrate with 63.3% Fe, 0.04% P, and a Fe recovery rate of 96% was obtained. The alkali can be readily regenerated by adding lime to the leaching solution, and the regenerated alkali has a leaching effect comparable to that of the fresh leaching solution. The recycling and utilization of alkaline leaching agents minimize production costs to the greatest extent possible. Mechanical studies have discovered that intact oolites undergo complete dissociation under alkaline leaching, enabling the leaching solution to permeate into the particles and thereby deeply eliminate impurities. The novel method has accomplished efficient processing of oolitic hematite and a reasonable control of production costs during processing, which is significant for expanding the reserves of iron ore resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
11.10%
发文量
111
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
期刊最新文献
Issue Information Issue Information Correction to “Investigation of molecular interaction, performance of green solvent in esterification of ethanol and acetic acid at 298.15 K and at 1 atm” Issue Information A new iron recovery and dephosphorization approach from unroasted high-phosphorus oolitic hematite ore via a facile chemical beneficiation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1