Abhishek Banerjee, Zeyu Hao, Mary Kreidel, Patrick Ledwith, Isabelle Phinney, Jeong Min Park, Andrew Zimmerman, Marie E. Wesson, Kenji Watanabe, Takashi Taniguchi, Robert M. Westervelt, Amir Yacoby, Pablo Jarillo-Herrero, Pavel A. Volkov, Ashvin Vishwanath, Kin Chung Fong, Philip Kim
{"title":"Superfluid stiffness of twisted trilayer graphene superconductors","authors":"Abhishek Banerjee, Zeyu Hao, Mary Kreidel, Patrick Ledwith, Isabelle Phinney, Jeong Min Park, Andrew Zimmerman, Marie E. Wesson, Kenji Watanabe, Takashi Taniguchi, Robert M. Westervelt, Amir Yacoby, Pablo Jarillo-Herrero, Pavel A. Volkov, Ashvin Vishwanath, Kin Chung Fong, Philip Kim","doi":"10.1038/s41586-024-08444-3","DOIUrl":null,"url":null,"abstract":"The robustness of the macroscopic quantum nature of a superconductor can be characterized by the superfluid stiffness, ρs, a quantity that describes the energy required to vary the phase of the macroscopic quantum wavefunction. In unconventional superconductors, such as cuprates, the low-temperature behaviour of ρs markedly differs from that of conventional superconductors owing to quasiparticle excitations from gapless points (nodes) in momentum space. Intensive research on the recently discovered magic-angle twisted graphene family has revealed, in addition to superconducting states, strongly correlated electronic states associated with spontaneously broken symmetries, inviting the study of ρs to uncover the potentially unconventional nature of its superconductivity. Here we report the measurement of ρs in magic-angle twisted trilayer graphene (TTG), revealing unconventional nodal-gap superconductivity. Utilizing radio-frequency reflectometry techniques to measure the kinetic inductive response of superconducting TTG coupled to a microwave resonator, we find a linear temperature dependence of ρs at low temperatures and nonlinear Meissner effects in the current-bias dependence, both indicating nodal structures in the superconducting order parameter. Furthermore, the doping dependence shows a linear correlation between the zero-temperature ρs and the superconducting transition temperature Tc, reminiscent of Uemura’s relation in cuprates, suggesting phase-coherence-limited superconductivity. Our results provide strong evidence for nodal superconductivity in TTG and put strong constraints on the mechanisms of these graphene-based superconductors. Measurements of the superfluid stiffness in twisted trilayer graphene reveal unconventional nodal-gap superconductivity, where the superconducting transition is controlled by phase fluctuations rather than Cooper-pair breaking.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8049","pages":"93-98"},"PeriodicalIF":50.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08444-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The robustness of the macroscopic quantum nature of a superconductor can be characterized by the superfluid stiffness, ρs, a quantity that describes the energy required to vary the phase of the macroscopic quantum wavefunction. In unconventional superconductors, such as cuprates, the low-temperature behaviour of ρs markedly differs from that of conventional superconductors owing to quasiparticle excitations from gapless points (nodes) in momentum space. Intensive research on the recently discovered magic-angle twisted graphene family has revealed, in addition to superconducting states, strongly correlated electronic states associated with spontaneously broken symmetries, inviting the study of ρs to uncover the potentially unconventional nature of its superconductivity. Here we report the measurement of ρs in magic-angle twisted trilayer graphene (TTG), revealing unconventional nodal-gap superconductivity. Utilizing radio-frequency reflectometry techniques to measure the kinetic inductive response of superconducting TTG coupled to a microwave resonator, we find a linear temperature dependence of ρs at low temperatures and nonlinear Meissner effects in the current-bias dependence, both indicating nodal structures in the superconducting order parameter. Furthermore, the doping dependence shows a linear correlation between the zero-temperature ρs and the superconducting transition temperature Tc, reminiscent of Uemura’s relation in cuprates, suggesting phase-coherence-limited superconductivity. Our results provide strong evidence for nodal superconductivity in TTG and put strong constraints on the mechanisms of these graphene-based superconductors. Measurements of the superfluid stiffness in twisted trilayer graphene reveal unconventional nodal-gap superconductivity, where the superconducting transition is controlled by phase fluctuations rather than Cooper-pair breaking.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.