Femtojoule optical nonlinearity for deep learning with incoherent illumination
IF 11.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESScience AdvancesPub Date : 2025-01-31
Qixin Feng, Can B. Uzundal, Ruihan Guo, Collin Sanborn, Ruishi Qi, Jingxu Xie, Jianing Zhang, Junqiao Wu, Feng Wang
{"title":"Femtojoule optical nonlinearity for deep learning with incoherent illumination","authors":"Qixin Feng, Can B. Uzundal, Ruihan Guo, Collin Sanborn, Ruishi Qi, Jingxu Xie, Jianing Zhang, Junqiao Wu, Feng Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical nonlinearities, a critical component in ONNs, remains an outstanding challenge. Here, we introduce a nonlinear optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell with silicon photodiodes at the single-pixel level. We fabricate NOMA with more than half a million pixels, each functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules per pixel. With NOMA, we demonstrate an optical multilayer neural network. Our work holds promise for large-scale and low-power deep ONNs, computer vision, and real-time optical image processing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads4224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads4224","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Optical neural networks (ONNs) are a promising computational alternative for deep learning due to their inherent massive parallelism for linear operations. However, the development of energy-efficient and highly parallel optical nonlinearities, a critical component in ONNs, remains an outstanding challenge. Here, we introduce a nonlinear optical microdevice array (NOMA) compatible with incoherent illumination by integrating the liquid crystal cell with silicon photodiodes at the single-pixel level. We fabricate NOMA with more than half a million pixels, each functioning as an optical analog of the rectified linear unit at ultralow switching energy down to 100 femtojoules per pixel. With NOMA, we demonstrate an optical multilayer neural network. Our work holds promise for large-scale and low-power deep ONNs, computer vision, and real-time optical image processing.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.