Optogenetic calcium modulation in astrocytes enhances post-stroke recovery in chronic capsular infarct
IF 11.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESScience AdvancesPub Date : 2025-01-31
Jongwook Cho, Sangkyu Lee, Yeon Hee Kook, Jiyoung Park, Won Do Heo, C. Justin Lee, Hyoung-Ihl Kim
{"title":"Optogenetic calcium modulation in astrocytes enhances post-stroke recovery in chronic capsular infarct","authors":"Jongwook Cho, Sangkyu Lee, Yeon Hee Kook, Jiyoung Park, Won Do Heo, C. Justin Lee, Hyoung-Ihl Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Stroke is caused by disruption of cerebral blood flow, leading to neuronal death and dysfunction in the interconnected areas, which results in a wide range of severe symptoms depending on the specific brain regions affected. While previous studies have primarily focused on direct modulation of neuronal activity for post-stroke treatment, accumulating evidence suggests that astrocytes may play a critical role in post-stroke progression and could serve as a potential therapeutic target for recovery. In this study, we investigate the effects of selective modulation of astrocytic calcium signals on chronic stroke using OptoSTIM1, an optogenetic tool that activates endogenous calcium channels. In contrast to channelrhodopsin-2 (ChR2), OptoSTIM1 robustly elevates astrocytic calcium levels, sustaining the increase for over 10 min upon a single activation. The calcium elevation in astrocytes in the ipsilesional sensory-parietal cortex leads to remarkable recovery from post-stroke impairment. Thus, manipulating intracellular calcium levels in astrocytes holds promise as a potential therapeutic strategy for improving recovery following a stroke.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn7577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn7577","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is caused by disruption of cerebral blood flow, leading to neuronal death and dysfunction in the interconnected areas, which results in a wide range of severe symptoms depending on the specific brain regions affected. While previous studies have primarily focused on direct modulation of neuronal activity for post-stroke treatment, accumulating evidence suggests that astrocytes may play a critical role in post-stroke progression and could serve as a potential therapeutic target for recovery. In this study, we investigate the effects of selective modulation of astrocytic calcium signals on chronic stroke using OptoSTIM1, an optogenetic tool that activates endogenous calcium channels. In contrast to channelrhodopsin-2 (ChR2), OptoSTIM1 robustly elevates astrocytic calcium levels, sustaining the increase for over 10 min upon a single activation. The calcium elevation in astrocytes in the ipsilesional sensory-parietal cortex leads to remarkable recovery from post-stroke impairment. Thus, manipulating intracellular calcium levels in astrocytes holds promise as a potential therapeutic strategy for improving recovery following a stroke.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.