{"title":"Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots","authors":"Dezhi Yang, Miao Feng, Jianing Sun, Yexun Wei, Jiang Zou, Xiangyang Zhu, Guoying Gu","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s<sup>−1</sup>), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads8734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads8734","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s−1), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.