{"title":"Polysaccharide-Based Self-Healing Hydrogel for pH-Induced Smart Release of Lauric Acid to Accelerate Wound Healing.","authors":"Chelladurai Karthikeyan Balavigneswaran, Manoj Kumar Sundaram, Venkatesan Ramya, Karuppiah Prakash Shyam, Iniyan Saravanakumar, Balamuthu Kadalmani, Sharanya Ramkumar, Sowmya Selvaraj, Ponrasu Thangavel, Vignesh Muthuvijayan","doi":"10.1021/acsabm.4c01668","DOIUrl":null,"url":null,"abstract":"<p><p>It is highly desirable yet significantly challenging to fabricate an injectable, self-healing, controlled-release wound dressing that is responsive to the alkaline pH of the wounds. Herein, we propose a facile approach to prepare pH-responsive chitosan-oxidized carboxymethyl cellulose (CS-o-CMC) hydrogel constructs in which gelation was achieved via electrostatic and Schiff base formation. Importantly, the Schiff base was formed in acidic medium and the final pH of pregel solution was intrinsically raised to 7.0-7.4 due to the cross-linking by β-glycerol phosphate. The self-healing behavior of the hydrogel was an enthalpy-driven process and efficient in alkaline compared to acidic pH. The pH responsiveness offered a controlled release of lauric acid (LA) from CS-o-CMC/LA hydrogel and regulated the M2 polarization. Overall, reduction in inflammation led to rapid vascularization, reepithelialization, and significantly accelerated wound healing in rats. Our findings demonstrate a promising strategy for developing injectable, immunomodulatory wound dressings tailored to the challenging environment of wounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
It is highly desirable yet significantly challenging to fabricate an injectable, self-healing, controlled-release wound dressing that is responsive to the alkaline pH of the wounds. Herein, we propose a facile approach to prepare pH-responsive chitosan-oxidized carboxymethyl cellulose (CS-o-CMC) hydrogel constructs in which gelation was achieved via electrostatic and Schiff base formation. Importantly, the Schiff base was formed in acidic medium and the final pH of pregel solution was intrinsically raised to 7.0-7.4 due to the cross-linking by β-glycerol phosphate. The self-healing behavior of the hydrogel was an enthalpy-driven process and efficient in alkaline compared to acidic pH. The pH responsiveness offered a controlled release of lauric acid (LA) from CS-o-CMC/LA hydrogel and regulated the M2 polarization. Overall, reduction in inflammation led to rapid vascularization, reepithelialization, and significantly accelerated wound healing in rats. Our findings demonstrate a promising strategy for developing injectable, immunomodulatory wound dressings tailored to the challenging environment of wounds.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.