Chen-Kai Guo, Chen-Rui Xia, Guangdun Peng, Zhi-Jie Cao, Ge Gao
{"title":"Learning Phenotype Associated Signature in Spatial Transcriptomics with PASSAGE.","authors":"Chen-Kai Guo, Chen-Rui Xia, Guangdun Peng, Zhi-Jie Cao, Ge Gao","doi":"10.1002/smtd.202401451","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) is poised to advance the understanding of cellular organization within complex tissues under various physiological and pathological conditions at unprecedented resolution. Despite the development of numerous computational tools that facilitate the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), these methods typically operate in an unsupervised manner, without leveraging sample characteristics like physiological/pathological states. Here PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep learning framework is presented for characterizing phenotype-associated signatures across multiple heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic benchmarks, PASSAGE's unique capability in calling sophisticated signatures has been demonstrated in multiple real-world cases. The full package of PASSAGE is available at https://github.com/gao-lab/PASSAGE.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401451"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401451","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially resolved transcriptomics (SRT) is poised to advance the understanding of cellular organization within complex tissues under various physiological and pathological conditions at unprecedented resolution. Despite the development of numerous computational tools that facilitate the automatic identification of statistically significant intra-/inter-slice patterns (like spatial domains), these methods typically operate in an unsupervised manner, without leveraging sample characteristics like physiological/pathological states. Here PASSAGE (Phenotype Associated Spatial Signature Analysis with Graph-based Embedding), a rationally-designed deep learning framework is presented for characterizing phenotype-associated signatures across multiple heterogeneous spatial slices effectively. In addition to its outstanding performance in systematic benchmarks, PASSAGE's unique capability in calling sophisticated signatures has been demonstrated in multiple real-world cases. The full package of PASSAGE is available at https://github.com/gao-lab/PASSAGE.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.