Y El Yousfi, F J Fernández-Farrán, F J Oliver, A López-Rivas, R Yerbes
{"title":"Regulation of ER stress-induced apoptotic and inflammatory responses via YAP/TAZ-mediated control of the TRAIL-R2/DR5 signaling pathway.","authors":"Y El Yousfi, F J Fernández-Farrán, F J Oliver, A López-Rivas, R Yerbes","doi":"10.1038/s41420-025-02335-w","DOIUrl":null,"url":null,"abstract":"<p><p>In tumors, cancer cells are frequently exposed to adverse environmental conditions that result in endoplasmic reticulum (ER) stress. Mechanical signals emerging from extracellular matrix (ECM) rigidity and cell shape regulate the activity of transcriptional co-activators Yes-associated protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding motif (TAZ). However, the role of ECM rigidity and YAP/TAZ in tumor cell fate decisions under ER stress remains relatively unexplored. Our results suggest that the YAP/TAZ system plays an important role in the control of ER stress-induced cell death by mechanical signaling arising from ECM stiffness in tumor cells. Mechanistically, YAP/TAZ regulates apoptosis induced by ER stress in tumor cells by controlling the activation of the TRAIL-R2/DR5-mediated extrinsic apoptotic pathway through a dual mechanism. On the one hand, the YAP/TAZ system prevents intracellular TRAIL-R2/DR5 clustering in tumor cells. On the other hand, it inhibits cFLIP down-regulation in tumor cells experiencing ER stress. In addition, YAP/TAZ controls the expression of pro-inflammatory interleukin-8 (IL-8/CXCL8) in tumor cells undergoing ER stress by a TRAIL-R2/DR5/caspase-8-dependent mechanism. Although other mechanisms may also be involved in controlling cell death and inflammation in tumor cells facing environmental stress, our results support a model in which regulation of the subcellular localization and activity of the YAP/TAZ transcriptional co-activators could contribute to the microenvironmental control of cell fate decisions in tumor cells undergoing ER stress.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"42"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02335-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In tumors, cancer cells are frequently exposed to adverse environmental conditions that result in endoplasmic reticulum (ER) stress. Mechanical signals emerging from extracellular matrix (ECM) rigidity and cell shape regulate the activity of transcriptional co-activators Yes-associated protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding motif (TAZ). However, the role of ECM rigidity and YAP/TAZ in tumor cell fate decisions under ER stress remains relatively unexplored. Our results suggest that the YAP/TAZ system plays an important role in the control of ER stress-induced cell death by mechanical signaling arising from ECM stiffness in tumor cells. Mechanistically, YAP/TAZ regulates apoptosis induced by ER stress in tumor cells by controlling the activation of the TRAIL-R2/DR5-mediated extrinsic apoptotic pathway through a dual mechanism. On the one hand, the YAP/TAZ system prevents intracellular TRAIL-R2/DR5 clustering in tumor cells. On the other hand, it inhibits cFLIP down-regulation in tumor cells experiencing ER stress. In addition, YAP/TAZ controls the expression of pro-inflammatory interleukin-8 (IL-8/CXCL8) in tumor cells undergoing ER stress by a TRAIL-R2/DR5/caspase-8-dependent mechanism. Although other mechanisms may also be involved in controlling cell death and inflammation in tumor cells facing environmental stress, our results support a model in which regulation of the subcellular localization and activity of the YAP/TAZ transcriptional co-activators could contribute to the microenvironmental control of cell fate decisions in tumor cells undergoing ER stress.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.