LC-MS/MS-Profiling of Human Serum Unveils Significant Increase in Neuroinflammation and Carcinogenesis Following Chronic Organophosphate Exposure.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-02-04 DOI:10.1021/acs.jproteome.4c00995
Vishal Sandilya, Dina El-Gameel, Mojgan Atashi, Thu Nguyen, Mojibola Fowowe, Md Mostofa Al Amin Bhuiyan, Oluwatosin Daramola, Judith Nwaiwu, Noha A Hamdy, Maha Ghanem, Labiba K El-Khordagui, Salwa M Abdallah, Ahmed El-Yazbi, Yehia Mechref
{"title":"LC-MS/MS-Profiling of Human Serum Unveils Significant Increase in Neuroinflammation and Carcinogenesis Following Chronic Organophosphate Exposure.","authors":"Vishal Sandilya, Dina El-Gameel, Mojgan Atashi, Thu Nguyen, Mojibola Fowowe, Md Mostofa Al Amin Bhuiyan, Oluwatosin Daramola, Judith Nwaiwu, Noha A Hamdy, Maha Ghanem, Labiba K El-Khordagui, Salwa M Abdallah, Ahmed El-Yazbi, Yehia Mechref","doi":"10.1021/acs.jproteome.4c00995","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of organophosphate pesticides (OPs) has escalated in response to the growing global food demand driven by a rapidly increasing population and the environmental disruptions caused by climate change. While acute exposure leads to cholinergic poisoning, chronic OP exposure has been linked to organ dysfunction, inflammation, and carcinogenesis. Serum samples from healthy individuals (<i>n</i> = 11), patients with acute OP exposure (<i>n</i> = 12), and those with chronic OP exposure (<i>n</i> = 31) were analyzed to discern the differentially expressed pathways after acute and chronic OP exposure. Differential expression analysis identified 132 proteins altered in chronic exposure vs control, 86 in acute exposure vs control, and 124 in chronic vs acute exposure. Pathway analysis revealed increased blood coagulation and reduced LXR/RXR activation and DCHR24 signaling in both acute and chronic exposures. Elevated levels of pro-inflammatory proteins, such as S100A8, VWF, and GPIBA, were observed, particularly in chronic exposure, highlighting significant inflammatory effects of OP exposure. These findings provide insights into the pathological mechanisms underlying chronic OP exposure and its contribution to inflammation and long-term health risks.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00995","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of organophosphate pesticides (OPs) has escalated in response to the growing global food demand driven by a rapidly increasing population and the environmental disruptions caused by climate change. While acute exposure leads to cholinergic poisoning, chronic OP exposure has been linked to organ dysfunction, inflammation, and carcinogenesis. Serum samples from healthy individuals (n = 11), patients with acute OP exposure (n = 12), and those with chronic OP exposure (n = 31) were analyzed to discern the differentially expressed pathways after acute and chronic OP exposure. Differential expression analysis identified 132 proteins altered in chronic exposure vs control, 86 in acute exposure vs control, and 124 in chronic vs acute exposure. Pathway analysis revealed increased blood coagulation and reduced LXR/RXR activation and DCHR24 signaling in both acute and chronic exposures. Elevated levels of pro-inflammatory proteins, such as S100A8, VWF, and GPIBA, were observed, particularly in chronic exposure, highlighting significant inflammatory effects of OP exposure. These findings provide insights into the pathological mechanisms underlying chronic OP exposure and its contribution to inflammation and long-term health risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. O-GlcNAcylation: Sagacious Orchestrator of Bone-, Joint-, and Spine-Related Diseases. Issue Publication Information Issue Editorial Masthead Deep Saliva Proteomics Elucidating the Pathogenesis of Early Childhood Caries and Identifying Biomarkers for Early Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1