Determining the function of ripening associated genes and biochemical changes during tomato (Solanum lycopersicum L.) fruit maturation.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2025-02-05 DOI:10.1007/s10529-025-03565-9
Darshan Dorairaj, Shivangi Sharma, Kiran Suresh Mawale, Bijesh Puthusseri, Giridhar Parvatam, Nandini Prasad Shetty
{"title":"Determining the function of ripening associated genes and biochemical changes during tomato (Solanum lycopersicum L.) fruit maturation.","authors":"Darshan Dorairaj, Shivangi Sharma, Kiran Suresh Mawale, Bijesh Puthusseri, Giridhar Parvatam, Nandini Prasad Shetty","doi":"10.1007/s10529-025-03565-9","DOIUrl":null,"url":null,"abstract":"<p><p>This article examines biochemical alterations and gene expression changes during tomato fruit physiology. The chroma index increases from mature green (41.27) to red ripe (48.36) stages, and the texture softens from mature green (43.56 N) to red ripe (24.75 N). Reducing sugar and total carotenoid levels rise at the red ripe stage. Free radical content was elevated in the early stages (7 nM) of ripening and declined at the later stages (4 nM). The specific activity of α-mannosidase and β-N-acetyl hexosaminidase was high at the breaker (0.077 & 0.075 U/mg, respectively) stages, while polygalacturonase activity was high at red ripe (1.173 U/mg) stage. qPCR experiments revealed that the α-mannosidase was upregulated during the breaker (1.2 fold) stages of tomato ripening, the β-N-acetyl Hexosaminidase was upregulated throughout the breaker (2 fold), and pink (1.2 fold) stages of tomato ripening, and the β-xylosidase was upregulated significantly during the breaker stage (3.9 fold) of tomato ripening. The current findings revealed that the α-Mannosidase (0.77), β-N-acetylhexosaminidase (0.99), xylosidase (0.85), ethylene-responsive factors (0.86), aminocylco propane carboxylic oxidase (0.90), and pectin methylesterase (0.83), were significantly associated with textural softening. Polygalacturonase (0.75) positively correlated to reducing sugar formation, aminocylco propane carboxylic synthase 4 (0.96) expression correlates with chroma changes during tomato fruit ripening. These correlations illustrate the complex interplay between gene expression and the physical and biochemical changes occurring during tomato fruit ripening.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 1","pages":"22"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03565-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines biochemical alterations and gene expression changes during tomato fruit physiology. The chroma index increases from mature green (41.27) to red ripe (48.36) stages, and the texture softens from mature green (43.56 N) to red ripe (24.75 N). Reducing sugar and total carotenoid levels rise at the red ripe stage. Free radical content was elevated in the early stages (7 nM) of ripening and declined at the later stages (4 nM). The specific activity of α-mannosidase and β-N-acetyl hexosaminidase was high at the breaker (0.077 & 0.075 U/mg, respectively) stages, while polygalacturonase activity was high at red ripe (1.173 U/mg) stage. qPCR experiments revealed that the α-mannosidase was upregulated during the breaker (1.2 fold) stages of tomato ripening, the β-N-acetyl Hexosaminidase was upregulated throughout the breaker (2 fold), and pink (1.2 fold) stages of tomato ripening, and the β-xylosidase was upregulated significantly during the breaker stage (3.9 fold) of tomato ripening. The current findings revealed that the α-Mannosidase (0.77), β-N-acetylhexosaminidase (0.99), xylosidase (0.85), ethylene-responsive factors (0.86), aminocylco propane carboxylic oxidase (0.90), and pectin methylesterase (0.83), were significantly associated with textural softening. Polygalacturonase (0.75) positively correlated to reducing sugar formation, aminocylco propane carboxylic synthase 4 (0.96) expression correlates with chroma changes during tomato fruit ripening. These correlations illustrate the complex interplay between gene expression and the physical and biochemical changes occurring during tomato fruit ripening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
Optimization of recombinant neurturin expression in Escherichia coli using response surface methodology. The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme. Metabolic engineering of Escherichia coli for enhanced production of hyaluronic acid. Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil. Development of a fully automated latex-enhanced immunoturbidimetric method for quantitative serum Lp(a) measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1