Nanofiltration-based purification process for whole-cell transformed prebiotic galactooligosaccharides.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2025-02-04 DOI:10.1007/s00449-025-03132-6
Anita Srivastava, Arjun Rastogi, Avijeet S Jaswal, Jatindra K Sahu, Gopal P Agarwal, Saroj Mishra
{"title":"Nanofiltration-based purification process for whole-cell transformed prebiotic galactooligosaccharides.","authors":"Anita Srivastava, Arjun Rastogi, Avijeet S Jaswal, Jatindra K Sahu, Gopal P Agarwal, Saroj Mishra","doi":"10.1007/s00449-025-03132-6","DOIUrl":null,"url":null,"abstract":"<p><p>The enrichment of galactooligosaccharides (GOS), synthesized by whole cells of Kluyveromyces marxianus 3551 in a 5.0-L bioreactor, was investigated in this study. The synthesized sugar mixture containing 17.89% (w/w of total carbohydrates) of GOS with 15.57% (w/w of total carbohydrates) of lactose, and 66.54% (w/w of total carbohydrates) monosaccharides as impurities, was subjected to nanofiltration for enrichment of GOS. Three distinct spiral wound membranes, namely, NFPS-01(polysulfone), NFCA-02 (cellulose acetate), and NFPES-03 (polyethersulfone) were tested out of which the NFPES-03 performed the best for fractionation of the GOS mixture. The polyethersulphone membrane (cut-off 400-1000 Da) was evaluated at 30 ℃ and 50 ℃, at different transmembrane pressures or TMP (15, 20, 25 bar) and a combination of high temperature (50 ℃) and low pressure (15 bar) gave the greatest difference in the trisaccharide and disaccharide/monosaccharide rejection percentages, resulting in enrichment of GOS. An analysis of the sugar concentrations in the retentate samples by high-performance liquid chromatography indicated the percentage recovery of GOS in the integrated process to be 88.8%. Measurement of the growth profile of several microbes on the nano-filtered GOS demonstrated its effectiveness as a prebiotic source.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03132-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The enrichment of galactooligosaccharides (GOS), synthesized by whole cells of Kluyveromyces marxianus 3551 in a 5.0-L bioreactor, was investigated in this study. The synthesized sugar mixture containing 17.89% (w/w of total carbohydrates) of GOS with 15.57% (w/w of total carbohydrates) of lactose, and 66.54% (w/w of total carbohydrates) monosaccharides as impurities, was subjected to nanofiltration for enrichment of GOS. Three distinct spiral wound membranes, namely, NFPS-01(polysulfone), NFCA-02 (cellulose acetate), and NFPES-03 (polyethersulfone) were tested out of which the NFPES-03 performed the best for fractionation of the GOS mixture. The polyethersulphone membrane (cut-off 400-1000 Da) was evaluated at 30 ℃ and 50 ℃, at different transmembrane pressures or TMP (15, 20, 25 bar) and a combination of high temperature (50 ℃) and low pressure (15 bar) gave the greatest difference in the trisaccharide and disaccharide/monosaccharide rejection percentages, resulting in enrichment of GOS. An analysis of the sugar concentrations in the retentate samples by high-performance liquid chromatography indicated the percentage recovery of GOS in the integrated process to be 88.8%. Measurement of the growth profile of several microbes on the nano-filtered GOS demonstrated its effectiveness as a prebiotic source.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
Carbon paper anodes decorated with TiO2 nanowires and Au nanoparticles for facilitating bacterial extracellular electron transfer. A tandem conversion process for the synthesis of polyitaconic acid from glucose in the Aspergillus terreus culture. Bioprocess biomarker identification and diagnosis for industrial mAb production based on metabolic profiling and multivariate data analysis. Degradation and detoxification of aflatoxin B1 by two peroxidase enzymes from Irpex lacteus F17. In situ synthesis of silver nanoparticles on silk: producing antibacterial fabrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1