Assessment of in vitro skin permeation and accumulation of phenolic acids from honey and honey-based pharmaceutical formulations.

IF 3.3 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE BMC Complementary Medicine and Therapies Pub Date : 2025-02-04 DOI:10.1186/s12906-025-04786-1
Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Perużyńska, Edyta Kucharska, Łukasz Kucharski, Karolina Jakubczyk, Paulina Niedźwiedzka-Rystwej, Justyna Stefanowicz-Hajduk, Marek Droździk, Juraj Majtan
{"title":"Assessment of in vitro skin permeation and accumulation of phenolic acids from honey and honey-based pharmaceutical formulations.","authors":"Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Perużyńska, Edyta Kucharska, Łukasz Kucharski, Karolina Jakubczyk, Paulina Niedźwiedzka-Rystwej, Justyna Stefanowicz-Hajduk, Marek Droździk, Juraj Majtan","doi":"10.1186/s12906-025-04786-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Honey has been successfully used in wound care and cosmetics because of its effective biological properties, including antibacterial, antioxidant, and anti-inflammatory activities. Polyphenols, particularly phenolic acids, are key honey components responsible for these beneficial effects. In recent years, there has been a growing demand for natural, ecologically friendly, and biodegradable products in the modern cosmetics and wound care market. This study aimed to identify and quantify phenolic acids in four Polish honey samples of different botanical origins (heather, buckwheat, linden and rapeseed) and to assess for the first time the permeation of the identified phenolic acids through the skin and their accumulation after the application of pure honey samples, as well as honey-based hydrogel and emulsion formulations.</p><p><strong>Methods: </strong>The honey samples' antioxidant activity and total phenolic content were determined using the DPPH and ABTS assays and the Folin-Ciocalteu method, respectively. Phenolic acids and volatile compounds were identified and quantified in honey samples using the HPLC-UV and GC-MS method, respectively. The biocompatibility of the honey samples was evaluated using a murine fibroblast cell line (L929). A Franz-type vertical diffusion cell with porcine skin was used to assess phenolic acid's permeation and skin accumulation from different honey-based pharmaceutical formulations. The biodegradability of the prepared formulations was also characterised.</p><p><strong>Results: </strong>Gallic acid, 3,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, coumaric acid, and 3-hydroxybenzoic acid were identified and quantified in the honey samples. Heather honey exhibited significantly higher antioxidant activity and total polyphenol content than the other honey samples. Heather, linden and buckwheat honey samples significantly decreased cell viability at concentrations of 5% and 2.5%, while rapeseed honey sample markedly reduced fibroblast viability only at 5%. Among the tested formulations - pure honey, hydrogel, and emulsion - higher skin permeation and accumulation rates of phenolic acids were observed with the prepared honey-based hydrogels than with the pure honeys and emulsions. Additionally, the prepared formulations were classified as partially biodegradable.</p><p><strong>Conclusions: </strong>The obtained results confirmed the effectiveness of two pharmaceutical formulations in the form of a hydrogel or emulsion containing honey after applied topically. The inclusion of honey in the vehicle, in particular hydrogel increased the penetration of phenolic acids through the skin.</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"43"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-025-04786-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Honey has been successfully used in wound care and cosmetics because of its effective biological properties, including antibacterial, antioxidant, and anti-inflammatory activities. Polyphenols, particularly phenolic acids, are key honey components responsible for these beneficial effects. In recent years, there has been a growing demand for natural, ecologically friendly, and biodegradable products in the modern cosmetics and wound care market. This study aimed to identify and quantify phenolic acids in four Polish honey samples of different botanical origins (heather, buckwheat, linden and rapeseed) and to assess for the first time the permeation of the identified phenolic acids through the skin and their accumulation after the application of pure honey samples, as well as honey-based hydrogel and emulsion formulations.

Methods: The honey samples' antioxidant activity and total phenolic content were determined using the DPPH and ABTS assays and the Folin-Ciocalteu method, respectively. Phenolic acids and volatile compounds were identified and quantified in honey samples using the HPLC-UV and GC-MS method, respectively. The biocompatibility of the honey samples was evaluated using a murine fibroblast cell line (L929). A Franz-type vertical diffusion cell with porcine skin was used to assess phenolic acid's permeation and skin accumulation from different honey-based pharmaceutical formulations. The biodegradability of the prepared formulations was also characterised.

Results: Gallic acid, 3,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, coumaric acid, and 3-hydroxybenzoic acid were identified and quantified in the honey samples. Heather honey exhibited significantly higher antioxidant activity and total polyphenol content than the other honey samples. Heather, linden and buckwheat honey samples significantly decreased cell viability at concentrations of 5% and 2.5%, while rapeseed honey sample markedly reduced fibroblast viability only at 5%. Among the tested formulations - pure honey, hydrogel, and emulsion - higher skin permeation and accumulation rates of phenolic acids were observed with the prepared honey-based hydrogels than with the pure honeys and emulsions. Additionally, the prepared formulations were classified as partially biodegradable.

Conclusions: The obtained results confirmed the effectiveness of two pharmaceutical formulations in the form of a hydrogel or emulsion containing honey after applied topically. The inclusion of honey in the vehicle, in particular hydrogel increased the penetration of phenolic acids through the skin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Complementary Medicine and Therapies
BMC Complementary Medicine and Therapies INTEGRATIVE & COMPLEMENTARY MEDICINE-
CiteScore
6.10
自引率
2.60%
发文量
300
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Knowledge and perception of stroke management practices among middle-aged residents of Otolo community in Nnewi North Local Government Area, Nigeria. Assessment of in vitro skin permeation and accumulation of phenolic acids from honey and honey-based pharmaceutical formulations. Balneotherapy for the treatment of post-COVID syndrome: a randomized controlled trial. Comparative effects of Health Qigong and closed motor exercise on the physical and mental health of female drug rehabilitation participants: a randomized controlled trial. Effect of the cervical and thoracic "Daoyin" training on posture and pulmonary function in patients with upper crossed syndrome: a randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1