{"title":"Integrated Approach for Biomarker Discovery and Mechanistic Insights into the Co-Pathogenesis of Type 2 Diabetes Mellitus and Non-Hodgkin Lymphoma.","authors":"Yidong Zhu, Jun Liu, Bo Wang","doi":"10.2147/DMSO.S503449","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus (T2DM) is associated with an increased risk of non-Hodgkin lymphoma (NHL), but the underlying mechanisms remain unclear. This study aimed to identify potential biomarkers and elucidate the molecular mechanisms underlying the co-pathogenesis of T2DM and NHL.</p><p><strong>Methods: </strong>Microarray datasets of T2DM and NHL were downloaded from the Gene Expression Omnibus database. Subsequently, a protein-protein interaction network was constructed based on the common differentially expressed genes (DEGs) between T2DM and NHL to explore regulatory interactions. Functional analyses were performed to explore underlying mechanisms. Topological analysis and machine learning algorithms were applied to refine hub gene selection. Finally, quantitative real-time polymerase chain reaction was performed to validate hub genes in clinical samples.</p><p><strong>Results: </strong>Intersection analysis of DEGs from the T2DM and NHL datasets identified 81 shared genes. Functional analyses suggested that immune-related pathways played a significant role in the co-pathogenesis of T2DM and NHL. Topological analysis and machine learning identified three hub genes: <i>GZMM, HSPG2</i>, and <i>SERPING1</i>. Correlation analysis revealed significant correlations between these hub genes and immune cells, underscoring the importance of immune dysregulation in shared pathogenesis. The expression of these genes was successfully validated in clinical samples.</p><p><strong>Conclusion: </strong>This study suggested the pivotal role of immune dysregulation in the co-pathogenesis of T2DM and NHL and identified and validated three hub genes as key contributors. These findings provide insight into the complex interplay between T2DM and NHL.</p>","PeriodicalId":11116,"journal":{"name":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","volume":"18 ","pages":"267-282"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DMSO.S503449","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type 2 diabetes mellitus (T2DM) is associated with an increased risk of non-Hodgkin lymphoma (NHL), but the underlying mechanisms remain unclear. This study aimed to identify potential biomarkers and elucidate the molecular mechanisms underlying the co-pathogenesis of T2DM and NHL.
Methods: Microarray datasets of T2DM and NHL were downloaded from the Gene Expression Omnibus database. Subsequently, a protein-protein interaction network was constructed based on the common differentially expressed genes (DEGs) between T2DM and NHL to explore regulatory interactions. Functional analyses were performed to explore underlying mechanisms. Topological analysis and machine learning algorithms were applied to refine hub gene selection. Finally, quantitative real-time polymerase chain reaction was performed to validate hub genes in clinical samples.
Results: Intersection analysis of DEGs from the T2DM and NHL datasets identified 81 shared genes. Functional analyses suggested that immune-related pathways played a significant role in the co-pathogenesis of T2DM and NHL. Topological analysis and machine learning identified three hub genes: GZMM, HSPG2, and SERPING1. Correlation analysis revealed significant correlations between these hub genes and immune cells, underscoring the importance of immune dysregulation in shared pathogenesis. The expression of these genes was successfully validated in clinical samples.
Conclusion: This study suggested the pivotal role of immune dysregulation in the co-pathogenesis of T2DM and NHL and identified and validated three hub genes as key contributors. These findings provide insight into the complex interplay between T2DM and NHL.
期刊介绍:
An international, peer-reviewed, open access, online journal. The journal is committed to the rapid publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication.