Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024).

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2025-02-16 DOI:10.1080/13543776.2025.2462849
Qiaohong Geng, Juanjuan Xu, Chunsheng Du, Deheng Zhang, Yanrui Jin, Jiatong Song, Wenjing Qu, Changnan Zhang, Gaoxing Su, Peifu Jiao
{"title":"Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024).","authors":"Qiaohong Geng, Juanjuan Xu, Chunsheng Du, Deheng Zhang, Yanrui Jin, Jiatong Song, Wenjing Qu, Changnan Zhang, Gaoxing Su, Peifu Jiao","doi":"10.1080/13543776.2025.2462849","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Targeting immune checkpoint proteins (ICPs) via small molecules open a new window for cancer immunotherapy. Herein, we summarize recent advances of small molecules with novel chemical structures targeting ICPs, discusses their anti-tumor efficacies, which are important for the development of novel small molecules for cancer immunotherapy.</p><p><strong>Areas covered: </strong>In this review, the latest patents and literature were gathered through the comprehensive searches in the databases of European Patent Office (EPO), Cortellis Drug Discovery Intelligence (CDDI), PubMed and Web of Science using ICPs and compounds as key words.</p><p><strong>Expert opinion: </strong>To develop novel weapons to fight against cancer, small molecules targeting ICPs including CTLA-4, LAG-3, PD-L1, Siglec-9, TIM-3, TIGIT, and VISTA have been synthesized and evaluated in succession. Chief among them are the small molecules targeting PD-L1, which have been intensively investigated in recent years. Various in vitro assays such as ALPHA, HTRF binding assay, NFAT assay have been successfully developed to screen novel IPCs inhibitors. However, the in vivo assay, for example, using double-humanized PD-1/PD-L1 (hPD-1/hPD-L1) mouse as evaluation model, are seldom reported. Novel pharmacophores with new working mechanisms such as proteolysis targeting chimeras (PROTACs) and peptides are needed to enhance the therapeutic efficacy.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-32"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2025.2462849","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Targeting immune checkpoint proteins (ICPs) via small molecules open a new window for cancer immunotherapy. Herein, we summarize recent advances of small molecules with novel chemical structures targeting ICPs, discusses their anti-tumor efficacies, which are important for the development of novel small molecules for cancer immunotherapy.

Areas covered: In this review, the latest patents and literature were gathered through the comprehensive searches in the databases of European Patent Office (EPO), Cortellis Drug Discovery Intelligence (CDDI), PubMed and Web of Science using ICPs and compounds as key words.

Expert opinion: To develop novel weapons to fight against cancer, small molecules targeting ICPs including CTLA-4, LAG-3, PD-L1, Siglec-9, TIM-3, TIGIT, and VISTA have been synthesized and evaluated in succession. Chief among them are the small molecules targeting PD-L1, which have been intensively investigated in recent years. Various in vitro assays such as ALPHA, HTRF binding assay, NFAT assay have been successfully developed to screen novel IPCs inhibitors. However, the in vivo assay, for example, using double-humanized PD-1/PD-L1 (hPD-1/hPD-L1) mouse as evaluation model, are seldom reported. Novel pharmacophores with new working mechanisms such as proteolysis targeting chimeras (PROTACs) and peptides are needed to enhance the therapeutic efficacy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
P2Y12R antagonists in antithrombotic therapy: a patent and literature review (2019-present). Small molecule and peptide CXCR4 antagonists. A patent review from 2019 to 2024. JBI-802: the first orally available LSD1/HDAC6 dual inhibitor to enter clinical trials. Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024). Updated patent review for hematopoietic progenitor kinase (HPK1) inhibitors and degraders (2021-present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1