Gerhardus Breedt, Lise Korsten, Jarishma Keriuscia Gokul
{"title":"Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications.","authors":"Gerhardus Breedt, Lise Korsten, Jarishma Keriuscia Gokul","doi":"10.1007/s12223-025-01245-9","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01245-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.
期刊介绍:
Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.