Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Folia microbiologica Pub Date : 2025-02-05 DOI:10.1007/s12223-025-01245-9
Gerhardus Breedt, Lise Korsten, Jarishma Keriuscia Gokul
{"title":"Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications.","authors":"Gerhardus Breedt, Lise Korsten, Jarishma Keriuscia Gokul","doi":"10.1007/s12223-025-01245-9","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01245-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
期刊最新文献
Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases. Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1