Sina Saadati, Abdolah Sepahvand, Mohammadreza Razzazi
{"title":"Cloud and IoT based smart agent-driven simulation of human gait for detecting muscles disorder.","authors":"Sina Saadati, Abdolah Sepahvand, Mohammadreza Razzazi","doi":"10.1016/j.heliyon.2025.e42119","DOIUrl":null,"url":null,"abstract":"<p><p>Motion disorders affect a significant portion of the global population. While some symptoms can be managed with medications, these treatments often impact all muscles uniformly, not just the affected ones, leading to potential side effects including involuntary movements, confusion, and decreased short-term memory. Currently, there is no dedicated application for differentiating healthy muscles from abnormal ones. Existing analysis applications, designed for other purposes, often lack essential software engineering features such as a user-friendly interface, infrastructure independence, usability and learning ability, cloud computing capabilities, and AI-based assistance. This research proposes a computer-based methodology to analyze human motion and differentiate between healthy and unhealthy muscles. First, an IoT-based approach is proposed to digitize human motion using smartphones instead of hardly accessible wearable sensors and markers. The motion data is then simulated to analyze the neuromusculoskeletal system. An agent-driven modeling method ensures the naturalness, accuracy, and interpretability of the simulation, incorporating neuromuscular details such as Henneman's size principle, action potentials, motor units, and biomechanical principles. The results are then provided to medical and clinical experts to aid in differentiating between healthy and unhealthy muscles and for further investigation. Additionally, a deep learning-based ensemble framework is proposed to assist in the analysis of the simulation results, offering both accuracy and interpretability. A user-friendly graphical interface enhances the application's usability. Being fully cloud-based, the application is infrastructure-independent and can be accessed on smartphones, PCs, and other devices without installation. This strategy not only addresses the current challenges in treating motion disorders but also paves the way for other clinical simulations by considering both scientific and computational requirements.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 2","pages":"e42119"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42119","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Motion disorders affect a significant portion of the global population. While some symptoms can be managed with medications, these treatments often impact all muscles uniformly, not just the affected ones, leading to potential side effects including involuntary movements, confusion, and decreased short-term memory. Currently, there is no dedicated application for differentiating healthy muscles from abnormal ones. Existing analysis applications, designed for other purposes, often lack essential software engineering features such as a user-friendly interface, infrastructure independence, usability and learning ability, cloud computing capabilities, and AI-based assistance. This research proposes a computer-based methodology to analyze human motion and differentiate between healthy and unhealthy muscles. First, an IoT-based approach is proposed to digitize human motion using smartphones instead of hardly accessible wearable sensors and markers. The motion data is then simulated to analyze the neuromusculoskeletal system. An agent-driven modeling method ensures the naturalness, accuracy, and interpretability of the simulation, incorporating neuromuscular details such as Henneman's size principle, action potentials, motor units, and biomechanical principles. The results are then provided to medical and clinical experts to aid in differentiating between healthy and unhealthy muscles and for further investigation. Additionally, a deep learning-based ensemble framework is proposed to assist in the analysis of the simulation results, offering both accuracy and interpretability. A user-friendly graphical interface enhances the application's usability. Being fully cloud-based, the application is infrastructure-independent and can be accessed on smartphones, PCs, and other devices without installation. This strategy not only addresses the current challenges in treating motion disorders but also paves the way for other clinical simulations by considering both scientific and computational requirements.
期刊介绍:
Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.