Facile Synthesis of Polyethylene Glycol Passivated N-doping CQDs as Fluorescent Probe for Multi-Target Simultaneous Detection in Heavy-Metals Solution.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-02-04 DOI:10.1007/s10895-025-04161-w
Guangmei Zhang, Shang Feng, Ruiming Ge, Ying Liu, Qiufeng Zhu
{"title":"Facile Synthesis of Polyethylene Glycol Passivated N-doping CQDs as Fluorescent Probe for Multi-Target Simultaneous Detection in Heavy-Metals Solution.","authors":"Guangmei Zhang, Shang Feng, Ruiming Ge, Ying Liu, Qiufeng Zhu","doi":"10.1007/s10895-025-04161-w","DOIUrl":null,"url":null,"abstract":"<p><p>In order to quickly and conveniently detect multiple heavy metal ions in aqueous phase simultaneously, a polyethylene glycol passivated N-doping carbon quantum (p-N-CQDs) was synthesized by a hydrothermal method with citric acid (carbon source), urea (nitrogen source) and polyethylene glycol (passivator). The as-prepared p-N-CQDs could be evenly dispersed in deionized water, and the average diameter was 1.83 nm, resulting in 18.72% of fluorescence quantum yield. As a sensor, the fluorescence of p-N-CQDs would be significantly quenched with Fe<sup>3+</sup> or Cu<sup>2+</sup> under the different maximum emission wavelength of 452 nm and 448 nm, respectively. Therefore, a method for simultaneously detecting multiple heavy metal ions was proposed by discriminative fitting of the fluorescence emission peaks after metal ion quenching. Upon the experiments, two linear calibration curves between resolving fluorescence intensities of p-N-CQDs and concentration of the metal ions were obtained within a range of 10 to 1000 µM of Cu<sup>2+</sup> and 40 to 800 µM of Fe<sup>3+</sup>. And a limit of detection (LOD) of 0.032 µM was attained after resolving the curves based on the emission wavelength of 448 nm for Cu<sup>2+</sup> and 452 nm for Fe<sup>3+</sup> by a peak splitting software. In addition, the stability, selectivity and anti-interference of the proposal senor was confirmed.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04161-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to quickly and conveniently detect multiple heavy metal ions in aqueous phase simultaneously, a polyethylene glycol passivated N-doping carbon quantum (p-N-CQDs) was synthesized by a hydrothermal method with citric acid (carbon source), urea (nitrogen source) and polyethylene glycol (passivator). The as-prepared p-N-CQDs could be evenly dispersed in deionized water, and the average diameter was 1.83 nm, resulting in 18.72% of fluorescence quantum yield. As a sensor, the fluorescence of p-N-CQDs would be significantly quenched with Fe3+ or Cu2+ under the different maximum emission wavelength of 452 nm and 448 nm, respectively. Therefore, a method for simultaneously detecting multiple heavy metal ions was proposed by discriminative fitting of the fluorescence emission peaks after metal ion quenching. Upon the experiments, two linear calibration curves between resolving fluorescence intensities of p-N-CQDs and concentration of the metal ions were obtained within a range of 10 to 1000 µM of Cu2+ and 40 to 800 µM of Fe3+. And a limit of detection (LOD) of 0.032 µM was attained after resolving the curves based on the emission wavelength of 448 nm for Cu2+ and 452 nm for Fe3+ by a peak splitting software. In addition, the stability, selectivity and anti-interference of the proposal senor was confirmed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Development of RhB@CdMOF-based Fluorescent Sensor Array for Discrimination of BTEX. Engineering High-Performance Carbazole-Based Co-Sensitizers: Synthesis, Photophysical Characterization, and Synergistic Enhancement in Dye-Sensitized Solar Cells. Synthesis of Dual-Responsive, Highly Fluorescent, Non-Conjugated Polymer Dots for Fe3+ Detection. Synthesis of Novel Phenanthroimidazole Based Beta-Diketone Compounds: Investigation of Their Spectroscopic Properties and Electrochemical Characterization. Photocatalytic Degradation of Brilliant Blue Dye Under Solar Light Irradiation: An Insight Into Mechanistic, Kinetics, Mineralization and Scavenging Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1