Mortality Risk Prediction in Patients With Antimelanoma Differentiation-Associated, Gene 5 Antibody-Positive, Dermatomyositis-Associated Interstitial Lung Disease: Algorithm Development and Validation.
Hui Li, Ruyi Zou, Hongxia Xin, Ping He, Bin Xi, Yaqiong Tian, Qi Zhao, Xin Yan, Xiaohua Qiu, Yujuan Gao, Yin Liu, Min Cao, Bi Chen, Qian Han, Juan Chen, Guochun Wang, Hourong Cai
{"title":"Mortality Risk Prediction in Patients With Antimelanoma Differentiation-Associated, Gene 5 Antibody-Positive, Dermatomyositis-Associated Interstitial Lung Disease: Algorithm Development and Validation.","authors":"Hui Li, Ruyi Zou, Hongxia Xin, Ping He, Bin Xi, Yaqiong Tian, Qi Zhao, Xin Yan, Xiaohua Qiu, Yujuan Gao, Yin Liu, Min Cao, Bi Chen, Qian Han, Juan Chen, Guochun Wang, Hourong Cai","doi":"10.2196/62836","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with antimelanoma differentiation-associated gene 5 antibody-positive dermatomyositis-associated interstitial lung disease (anti-MDA5+DM-ILD) are susceptible to rapidly progressive interstitial lung disease (RP-ILD) and have a high risk of mortality. There is an urgent need for a reliable prediction model, accessible via an easy-to-use web-based tool, to evaluate the risk of death.</p><p><strong>Objective: </strong>This study aimed to develop and validate a risk prediction model of 3-month mortality using machine learning (ML) in a large multicenter cohort of patients with anti-MDA5+DM-ILD in China.</p><p><strong>Methods: </strong>In total, 609 consecutive patients with anti-MDA5+DM-ILD were retrospectively enrolled from 6 hospitals across China. Patient demographics and laboratory and clinical parameters were collected on admission. The primary endpoint was 3-month mortality due to all causes. Six ML algorithms (Extreme Gradient Boosting [XGBoost], logistic regression (LR), Light Gradient Boosting Machine [LightGBM], random forest [RF], support vector machine [SVM], and k-nearest neighbor [KNN]) were applied to construct and evaluate the model.</p><p><strong>Results: </strong>After applying inclusion and exclusion criteria, 509 (83.6%) of the 609 patients were included in our study, divided into a training cohort (n=203, 39.9%), an internal validation cohort (n=51, 10%), and 2 external validation cohorts (n=92, 18.1%, and n=163, 32%). ML identified 8 important variables as critical for model construction: RP-ILD, erythrocyte sedimentation rate (ESR), serum albumin (ALB) level, age, C-reactive protein (CRP) level, aspartate aminotransferase (AST) level, lactate dehydrogenase (LDH) level, and the neutrophil-to-lymphocyte ratio (NLR). LR was chosen as the best algorithm for model construction, and the model demonstrated excellent performance, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.866, a sensitivity of 84.8%, and a specificity of 84.4% on the validation data set and an AUC of 0.90, a sensitivity of 85.0%, and a specificity of 83.9% on the training data set. Calibration curves and decision curve analysis (DCA) confirmed the model's accuracy and clinical applicability. Moreover, the model showed strong predictive performance in the external validation cohorts (cohort 1: AUC=0.836, 95% CI 0.754-0.916; cohort 2: AUC=0.915, 95% CI 0.871-0.959), indicating good generalizability. This model was integrated into a web-based tool to predict the 3-month mortality for patients with anti-MDA5+DM-ILD.</p><p><strong>Conclusions: </strong>We successfully developed a robust clinical prediction model and an accompanying web tool to estimate the 3-month mortality risk for patients with anti-MDA5+DM-ILD.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e62836"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/62836","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients with antimelanoma differentiation-associated gene 5 antibody-positive dermatomyositis-associated interstitial lung disease (anti-MDA5+DM-ILD) are susceptible to rapidly progressive interstitial lung disease (RP-ILD) and have a high risk of mortality. There is an urgent need for a reliable prediction model, accessible via an easy-to-use web-based tool, to evaluate the risk of death.
Objective: This study aimed to develop and validate a risk prediction model of 3-month mortality using machine learning (ML) in a large multicenter cohort of patients with anti-MDA5+DM-ILD in China.
Methods: In total, 609 consecutive patients with anti-MDA5+DM-ILD were retrospectively enrolled from 6 hospitals across China. Patient demographics and laboratory and clinical parameters were collected on admission. The primary endpoint was 3-month mortality due to all causes. Six ML algorithms (Extreme Gradient Boosting [XGBoost], logistic regression (LR), Light Gradient Boosting Machine [LightGBM], random forest [RF], support vector machine [SVM], and k-nearest neighbor [KNN]) were applied to construct and evaluate the model.
Results: After applying inclusion and exclusion criteria, 509 (83.6%) of the 609 patients were included in our study, divided into a training cohort (n=203, 39.9%), an internal validation cohort (n=51, 10%), and 2 external validation cohorts (n=92, 18.1%, and n=163, 32%). ML identified 8 important variables as critical for model construction: RP-ILD, erythrocyte sedimentation rate (ESR), serum albumin (ALB) level, age, C-reactive protein (CRP) level, aspartate aminotransferase (AST) level, lactate dehydrogenase (LDH) level, and the neutrophil-to-lymphocyte ratio (NLR). LR was chosen as the best algorithm for model construction, and the model demonstrated excellent performance, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.866, a sensitivity of 84.8%, and a specificity of 84.4% on the validation data set and an AUC of 0.90, a sensitivity of 85.0%, and a specificity of 83.9% on the training data set. Calibration curves and decision curve analysis (DCA) confirmed the model's accuracy and clinical applicability. Moreover, the model showed strong predictive performance in the external validation cohorts (cohort 1: AUC=0.836, 95% CI 0.754-0.916; cohort 2: AUC=0.915, 95% CI 0.871-0.959), indicating good generalizability. This model was integrated into a web-based tool to predict the 3-month mortality for patients with anti-MDA5+DM-ILD.
Conclusions: We successfully developed a robust clinical prediction model and an accompanying web tool to estimate the 3-month mortality risk for patients with anti-MDA5+DM-ILD.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.