Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients.
Martina Zandl-Lang, Thomas Züllig, Michael Holzer, Thomas O Eichmann, Barbara Darnhofer, Annette Schwerin-Nagel, Joachim Zobel, Harald Haidl, Ariane Biebl, Harald Köfeler, Barbara Plecko
{"title":"Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients.","authors":"Martina Zandl-Lang, Thomas Züllig, Michael Holzer, Thomas O Eichmann, Barbara Darnhofer, Annette Schwerin-Nagel, Joachim Zobel, Harald Haidl, Ariane Biebl, Harald Köfeler, Barbara Plecko","doi":"10.1007/s00415-025-12909-4","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a rare neuromuscular disease caused by biallelic mutations in the SMN1 gene, leading to progressive muscle weakness due to degeneration of the anterior horn cells. Since 2017, SMA patients can be treated with the anti-sense oligonucleotide Nusinersen, which promotes alternative splicing of the SMN2 gene, by regular intrathecal injections. In this prospective study, we applied metabolomic, lipidomic, and proteomic analysis to examine sequential CSF samples from 13 SMA patients and controls. This multi-omic approach identified over 800 proteins and 400 small molecules including lipids. Multivariate analysis of multi-omic data successfully discriminated between the CSF derived from SMA patients and control subjects. Lipidomic analysis revealed increased levels of cholesteryl esters and lyso-phospholipids, along with reduced levels of cholesterol and phospholipids in the CSF of SMA patients as compared to healthy controls. These data, combined with results from functional assays, led us to conclude that SMA patients exhibit altered levels and function of high-density-lipoprotein (HDL)-like particles in the CSF. Notably, Nusinersen therapy was observed to reverse disease-specific profile changes toward a physiological state, potentially explicable by restoring HDL function.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 3","pages":"183"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-12909-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal muscular atrophy (SMA) is a rare neuromuscular disease caused by biallelic mutations in the SMN1 gene, leading to progressive muscle weakness due to degeneration of the anterior horn cells. Since 2017, SMA patients can be treated with the anti-sense oligonucleotide Nusinersen, which promotes alternative splicing of the SMN2 gene, by regular intrathecal injections. In this prospective study, we applied metabolomic, lipidomic, and proteomic analysis to examine sequential CSF samples from 13 SMA patients and controls. This multi-omic approach identified over 800 proteins and 400 small molecules including lipids. Multivariate analysis of multi-omic data successfully discriminated between the CSF derived from SMA patients and control subjects. Lipidomic analysis revealed increased levels of cholesteryl esters and lyso-phospholipids, along with reduced levels of cholesterol and phospholipids in the CSF of SMA patients as compared to healthy controls. These data, combined with results from functional assays, led us to conclude that SMA patients exhibit altered levels and function of high-density-lipoprotein (HDL)-like particles in the CSF. Notably, Nusinersen therapy was observed to reverse disease-specific profile changes toward a physiological state, potentially explicable by restoring HDL function.
期刊介绍:
The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field.
In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials.
Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.