Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients.

IF 4.8 2区 医学 Q1 CLINICAL NEUROLOGY Journal of Neurology Pub Date : 2025-02-04 DOI:10.1007/s00415-025-12909-4
Martina Zandl-Lang, Thomas Züllig, Michael Holzer, Thomas O Eichmann, Barbara Darnhofer, Annette Schwerin-Nagel, Joachim Zobel, Harald Haidl, Ariane Biebl, Harald Köfeler, Barbara Plecko
{"title":"Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients.","authors":"Martina Zandl-Lang, Thomas Züllig, Michael Holzer, Thomas O Eichmann, Barbara Darnhofer, Annette Schwerin-Nagel, Joachim Zobel, Harald Haidl, Ariane Biebl, Harald Köfeler, Barbara Plecko","doi":"10.1007/s00415-025-12909-4","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a rare neuromuscular disease caused by biallelic mutations in the SMN1 gene, leading to progressive muscle weakness due to degeneration of the anterior horn cells. Since 2017, SMA patients can be treated with the anti-sense oligonucleotide Nusinersen, which promotes alternative splicing of the SMN2 gene, by regular intrathecal injections. In this prospective study, we applied metabolomic, lipidomic, and proteomic analysis to examine sequential CSF samples from 13 SMA patients and controls. This multi-omic approach identified over 800 proteins and 400 small molecules including lipids. Multivariate analysis of multi-omic data successfully discriminated between the CSF derived from SMA patients and control subjects. Lipidomic analysis revealed increased levels of cholesteryl esters and lyso-phospholipids, along with reduced levels of cholesterol and phospholipids in the CSF of SMA patients as compared to healthy controls. These data, combined with results from functional assays, led us to conclude that SMA patients exhibit altered levels and function of high-density-lipoprotein (HDL)-like particles in the CSF. Notably, Nusinersen therapy was observed to reverse disease-specific profile changes toward a physiological state, potentially explicable by restoring HDL function.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 3","pages":"183"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-12909-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal muscular atrophy (SMA) is a rare neuromuscular disease caused by biallelic mutations in the SMN1 gene, leading to progressive muscle weakness due to degeneration of the anterior horn cells. Since 2017, SMA patients can be treated with the anti-sense oligonucleotide Nusinersen, which promotes alternative splicing of the SMN2 gene, by regular intrathecal injections. In this prospective study, we applied metabolomic, lipidomic, and proteomic analysis to examine sequential CSF samples from 13 SMA patients and controls. This multi-omic approach identified over 800 proteins and 400 small molecules including lipids. Multivariate analysis of multi-omic data successfully discriminated between the CSF derived from SMA patients and control subjects. Lipidomic analysis revealed increased levels of cholesteryl esters and lyso-phospholipids, along with reduced levels of cholesterol and phospholipids in the CSF of SMA patients as compared to healthy controls. These data, combined with results from functional assays, led us to conclude that SMA patients exhibit altered levels and function of high-density-lipoprotein (HDL)-like particles in the CSF. Notably, Nusinersen therapy was observed to reverse disease-specific profile changes toward a physiological state, potentially explicable by restoring HDL function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neurology
Journal of Neurology 医学-临床神经学
CiteScore
10.00
自引率
5.00%
发文量
558
审稿时长
1 months
期刊介绍: The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field. In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials. Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.
期刊最新文献
Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients. Correction: Switching from inotersen to eplontersen in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: analysis from NEURO-TTRansform. Sustained therapeutic effect of spinal cord stimulation on improving severe neurogenic orthostatic hypotension in a patient with pure autonomic failure converting to multiple system atrophy. Towards a biological view of multiple sclerosis from early subtle to clinical progression: an expert opinion. Albert Sidney Frankau Leyton, né Grünbaum (1869-1921).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1