Dawid Jakub Kubiak, Michal Wojciech Szczesniak, Karolina Ostrowska, Dawid Bielewicz, Susheel Sagar Bhat, Katarzyna Niedojadlo, Zofia Szweykowska-Kulinska, Artur Jarmolowski, Rupert George Fray, Janusz Niedojadlo
{"title":"Impact of m6A Modification and Transcript Quantity on mRNA Composition in Plant Stress Granules.","authors":"Dawid Jakub Kubiak, Michal Wojciech Szczesniak, Karolina Ostrowska, Dawid Bielewicz, Susheel Sagar Bhat, Katarzyna Niedojadlo, Zofia Szweykowska-Kulinska, Artur Jarmolowski, Rupert George Fray, Janusz Niedojadlo","doi":"10.1093/jxb/eraf046","DOIUrl":null,"url":null,"abstract":"<p><p>Stress granules (SGs) are cytoplasmic structures that emerge in response to unfavorable environmental conditions. The mechanisms governing the accumulation of transcripts in SGs are only partially understood. Despite the recognized role of N6-methyladenosine (m6A) in plant transcriptome regulation, its impact on SGs' composition and assembly remains elusive. In Lupinus angustifolius, SGs display a distinctive bi-zonal structure comprising of a ring and a central area with differences in ultrastructure and composition. Subsequent to the transcriptome analysis, specific mRNA were chosen to investigate their localization within SGs and assess m6A levels. Transcripts of hypoxia-responsive genes (ADH1 and HUP7) showed significantly lower levels of m6A compared to housekeeping genes, but only ADH1 was absent in SGs. HUP7 mRNA, characterized by a low quantity of m6A, is present both in the SGs and cytoplasm, probably due to extremely high expression level. The m6A was observed only during the assembly of SGs. In mutants of Arabidopsis thaliana with reduced levels of m6A, ECT2 (reader of m6A) was not observed in SGs, and poly(A) RNA levels and the number of SGs were reduced. In summary, our findings demonstrate a limited impact of m6A modification on SGs assembly. However, the interplay between m6A modification and the overall transcript quantity in the cytoplasm appears to play a regulatory role in mRNA partitioning and assembly of SGs.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stress granules (SGs) are cytoplasmic structures that emerge in response to unfavorable environmental conditions. The mechanisms governing the accumulation of transcripts in SGs are only partially understood. Despite the recognized role of N6-methyladenosine (m6A) in plant transcriptome regulation, its impact on SGs' composition and assembly remains elusive. In Lupinus angustifolius, SGs display a distinctive bi-zonal structure comprising of a ring and a central area with differences in ultrastructure and composition. Subsequent to the transcriptome analysis, specific mRNA were chosen to investigate their localization within SGs and assess m6A levels. Transcripts of hypoxia-responsive genes (ADH1 and HUP7) showed significantly lower levels of m6A compared to housekeeping genes, but only ADH1 was absent in SGs. HUP7 mRNA, characterized by a low quantity of m6A, is present both in the SGs and cytoplasm, probably due to extremely high expression level. The m6A was observed only during the assembly of SGs. In mutants of Arabidopsis thaliana with reduced levels of m6A, ECT2 (reader of m6A) was not observed in SGs, and poly(A) RNA levels and the number of SGs were reduced. In summary, our findings demonstrate a limited impact of m6A modification on SGs assembly. However, the interplay between m6A modification and the overall transcript quantity in the cytoplasm appears to play a regulatory role in mRNA partitioning and assembly of SGs.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.