{"title":"A novel microcapsule composite Spherulites Peony Superior Retinol mitigates UVB-induced skin damage in vitro and in vivo.","authors":"Jiejun Han, Rongyue Gong, Yuankun Liu, Tiangui Gong, Bin Wang, Laidi Zhang, Jiayue Chen","doi":"10.1111/php.14078","DOIUrl":null,"url":null,"abstract":"<p><p>Skin serves as our outermost barrier, protecting our bodies from various environmental damages. Increasing research has revealed that UVB is a primary factor for extrinsic aging. This study explored the role of a novel microcapsule composite Spherulites Peony Superior Retinol (SPSR) on skin damage induced by UVB. SPSR exhibited a capacity to eliminate UVB-induced ROS. By measurement of cyclobutane pyrimidine dimers (CPD) and comet assay, the results implied that SPSR mitigates DNA damage from oxidative damage caused by UVB. In addition, UVB radiation typically leads to an increase in inflammatory factors within the skin. Decreased gene expressions of interleukin-1α and TNF-α have been observed in HaCaT cells. Moreover, a decreased gene expression of extracellular matrix (ECM)-related protein, including fibronectin (FN1), Col1A1, and Col3A1 caused by UVB was mitigated by SPSR. Furthermore, the clinical trials with 30 volunteers confirmed the significant relief and antiwrinkle effects of the cosmetic formulation containing 0.1% SPSR. These findings implied the promising potential of SPSR as a comprehensive solution for combating the detrimental effects of UVB exposure and maintaining skin health.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14078","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin serves as our outermost barrier, protecting our bodies from various environmental damages. Increasing research has revealed that UVB is a primary factor for extrinsic aging. This study explored the role of a novel microcapsule composite Spherulites Peony Superior Retinol (SPSR) on skin damage induced by UVB. SPSR exhibited a capacity to eliminate UVB-induced ROS. By measurement of cyclobutane pyrimidine dimers (CPD) and comet assay, the results implied that SPSR mitigates DNA damage from oxidative damage caused by UVB. In addition, UVB radiation typically leads to an increase in inflammatory factors within the skin. Decreased gene expressions of interleukin-1α and TNF-α have been observed in HaCaT cells. Moreover, a decreased gene expression of extracellular matrix (ECM)-related protein, including fibronectin (FN1), Col1A1, and Col3A1 caused by UVB was mitigated by SPSR. Furthermore, the clinical trials with 30 volunteers confirmed the significant relief and antiwrinkle effects of the cosmetic formulation containing 0.1% SPSR. These findings implied the promising potential of SPSR as a comprehensive solution for combating the detrimental effects of UVB exposure and maintaining skin health.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.