{"title":"Exotic cuticular specializations in a Cambrian scalidophoran.","authors":"Giovanni Mussini, Nicholas J Butterfield","doi":"10.1098/rspb.2024.2806","DOIUrl":null,"url":null,"abstract":"<p><p>Scalidophora, the ecdysozoan group including priapulids, kinorhynchs and loriciferans, comprises some of the most abundant and ecologically important Cambrian animals. However, reconstructions of the morphology and lifestyles of fossil scalidophorans are often hampered by poor preservation of their submillimetre-scale cuticular specializations. Based on exceptionally preserved small carbonaceous fossils (SCFs), we describe a new scalidophoran-grade animal, <i>Scalidodendron crypticum</i> gen. et sp. nov., from the Early to Middle Cambrian Hess River Formation of northern Canada. The Hess River SCFs comprise pharyngeal teeth, coniform sclerites and hook-like sclerites, all closely comparable to known scalidophoran counterparts. The coniform and hook-like sclerites recurrently associate with arborescent cuticular projections that show multiple orders of branching, morphologically unlike those of any known living or fossil scalidophoran. The fine splintering and inferred post-pharyngeal position of these structures argue against locomotory, feeding and defensive roles with direct analogues in extant counterparts. As such, the arborescent structures of <i>Scalidodendron</i> denote a previously cryptic range of morphological variation in Cambrian scalidophorans, paralleling that of coeval panarthropods but expressed at a fundamentally different level of anatomical organization.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2040","pages":"20242806"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2806","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scalidophora, the ecdysozoan group including priapulids, kinorhynchs and loriciferans, comprises some of the most abundant and ecologically important Cambrian animals. However, reconstructions of the morphology and lifestyles of fossil scalidophorans are often hampered by poor preservation of their submillimetre-scale cuticular specializations. Based on exceptionally preserved small carbonaceous fossils (SCFs), we describe a new scalidophoran-grade animal, Scalidodendron crypticum gen. et sp. nov., from the Early to Middle Cambrian Hess River Formation of northern Canada. The Hess River SCFs comprise pharyngeal teeth, coniform sclerites and hook-like sclerites, all closely comparable to known scalidophoran counterparts. The coniform and hook-like sclerites recurrently associate with arborescent cuticular projections that show multiple orders of branching, morphologically unlike those of any known living or fossil scalidophoran. The fine splintering and inferred post-pharyngeal position of these structures argue against locomotory, feeding and defensive roles with direct analogues in extant counterparts. As such, the arborescent structures of Scalidodendron denote a previously cryptic range of morphological variation in Cambrian scalidophorans, paralleling that of coeval panarthropods but expressed at a fundamentally different level of anatomical organization.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.