Ameliorative Potential of Carvedilol Versus Platelet-Rich Plasma Against Paclitaxel-Induced Femoral Neuropathy in Wistar Rats: A Light and Electron Microscopic Study.
{"title":"Ameliorative Potential of Carvedilol Versus Platelet-Rich Plasma Against Paclitaxel-Induced Femoral Neuropathy in Wistar Rats: A Light and Electron Microscopic Study.","authors":"Ereny Fekry, George Nagi Refaat, Sara Adel Hosny","doi":"10.1093/mam/ozaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Paclitaxel, a chemotherapeutic drug, induces sensorimotor peripheral neuropathy. Carvedilol, a nonselective β-adrenoreceptor blocker, has been shown to exert antioxidant activity. Platelet-rich plasma (PRP) has supra-physiological levels of growth factors (GFs), enhances biosynthesis of antioxidant enzymes, and suppresses oxidative stress. This study compared the ameliorative effects of carvedilol and PRP on paclitaxel-induced femoral neuropathy. Eighty-eight adult male albino rats were equally randomized into four groups: group I served as the control; group II received paclitaxel (16 mg/kg intraperitoneally, weekly); group III received carvedilol (10 mg/kg daily, orally) concomitant with paclitaxel; and group IV received PRP (0.5 mL/kg subcutaneously, twice weekly) concomitant with paclitaxel. After 5 weeks, femoral nerve conduction velocity was measured, and blood samples were collected to assess catalase and superoxide dismutase levels. All animals were sacrificed, and gene expression of miR-21 was quantified. Tissue sections were stained with hematoxylin and eosin and toluidine blue. Then, the ultrathin sections were examined by transmission electron microscopy. Both carvedilol and PRP reversed paclitaxel-induced changes in the peripheral nerve, but PRP demonstrated a stronger antioxidant effect and a more pronounced presence of GFs, as evidenced by electron microscopy. PRP may represent a promising therapeutic approach for paclitaxel-induced neuropathy.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Paclitaxel, a chemotherapeutic drug, induces sensorimotor peripheral neuropathy. Carvedilol, a nonselective β-adrenoreceptor blocker, has been shown to exert antioxidant activity. Platelet-rich plasma (PRP) has supra-physiological levels of growth factors (GFs), enhances biosynthesis of antioxidant enzymes, and suppresses oxidative stress. This study compared the ameliorative effects of carvedilol and PRP on paclitaxel-induced femoral neuropathy. Eighty-eight adult male albino rats were equally randomized into four groups: group I served as the control; group II received paclitaxel (16 mg/kg intraperitoneally, weekly); group III received carvedilol (10 mg/kg daily, orally) concomitant with paclitaxel; and group IV received PRP (0.5 mL/kg subcutaneously, twice weekly) concomitant with paclitaxel. After 5 weeks, femoral nerve conduction velocity was measured, and blood samples were collected to assess catalase and superoxide dismutase levels. All animals were sacrificed, and gene expression of miR-21 was quantified. Tissue sections were stained with hematoxylin and eosin and toluidine blue. Then, the ultrathin sections were examined by transmission electron microscopy. Both carvedilol and PRP reversed paclitaxel-induced changes in the peripheral nerve, but PRP demonstrated a stronger antioxidant effect and a more pronounced presence of GFs, as evidenced by electron microscopy. PRP may represent a promising therapeutic approach for paclitaxel-induced neuropathy.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.