Quantitative Analysis of Grain Boundary Segregation of Boron in Steel with Secondary-Ion Mass Spectrometry in Comparison to Atom Probe Tomography.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2025-02-17 DOI:10.1093/mam/ozae137
Jun Takahashi, Kazuto Kawakami, Naoyoshi Kubota, Takae Jinnai
{"title":"Quantitative Analysis of Grain Boundary Segregation of Boron in Steel with Secondary-Ion Mass Spectrometry in Comparison to Atom Probe Tomography.","authors":"Jun Takahashi, Kazuto Kawakami, Naoyoshi Kubota, Takae Jinnai","doi":"10.1093/mam/ozae137","DOIUrl":null,"url":null,"abstract":"<p><p>To identify the origin of high intensities of BO2- signals on grain boundaries (GBs) in boron (B) mapping using secondary-ion mass spectrometry (SIMS), atom probe tomography analysis was performed on high-brightness GBs in the steel with the addition of B. Homogeneous segregation of B atoms as a solid solution, rather than continuous GB precipitation of fine boride, was observed at the GBs. The amounts of B segregation varied between the GBs. An estimation of the incident angle of the GB from the sample surface in each GB indicated that the high-brightness GBs always have smaller incident angles than the median angle under the assumption of random GB orientation, resulting in an increase in the GB area in the SIMS analyzed region. The product of the actual B segregation amount and area increase factor roughly corresponded to the apparent B intensity of the GB in B-mapping with SIMS. The high brightness in the B-mapping originated mainly from small incident angles of GB from the sample surface in the steel. The incident angle of the GB plane must be considered for quantification of GB segregation of B in the SIMS analysis.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To identify the origin of high intensities of BO2- signals on grain boundaries (GBs) in boron (B) mapping using secondary-ion mass spectrometry (SIMS), atom probe tomography analysis was performed on high-brightness GBs in the steel with the addition of B. Homogeneous segregation of B atoms as a solid solution, rather than continuous GB precipitation of fine boride, was observed at the GBs. The amounts of B segregation varied between the GBs. An estimation of the incident angle of the GB from the sample surface in each GB indicated that the high-brightness GBs always have smaller incident angles than the median angle under the assumption of random GB orientation, resulting in an increase in the GB area in the SIMS analyzed region. The product of the actual B segregation amount and area increase factor roughly corresponded to the apparent B intensity of the GB in B-mapping with SIMS. The high brightness in the B-mapping originated mainly from small incident angles of GB from the sample surface in the steel. The incident angle of the GB plane must be considered for quantification of GB segregation of B in the SIMS analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
How Cryo-EM Revolutionized the Field of Bioenergetics. Large-Angle Rocking Beam Electron Diffraction of Large Unit Cell Crystals Using Direct Electron Detector. Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations. Control of Grain Boundary Formation in Atomically Resolved Nanocrystalline Carbon Monolayers: Dependence on Electron Energy. Cytological Effects of Cadmium Poisoning and the Protective Effect of Quercetin: A Mechanism Exploration based on the Testicular Lamina Propria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1