Quantitative Determination of High-Frequency Voltage Attenuation in an Electric-Pulse-Excited Stroboscopic Transmission Electron Microscope.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2025-02-04 DOI:10.1093/mam/ozae132
Feng Zhu, Wanpeng Li, Man Chun Yeung, Yuxuan Zhang, Congcong Du, Bin Lin, Qi Wang, Xiaofeng Guo, Yu-Chun Hsueh, Fu-Rong Chen, Xiaoyan Zhong
{"title":"Quantitative Determination of High-Frequency Voltage Attenuation in an Electric-Pulse-Excited Stroboscopic Transmission Electron Microscope.","authors":"Feng Zhu, Wanpeng Li, Man Chun Yeung, Yuxuan Zhang, Congcong Du, Bin Lin, Qi Wang, Xiaofeng Guo, Yu-Chun Hsueh, Fu-Rong Chen, Xiaoyan Zhong","doi":"10.1093/mam/ozae132","DOIUrl":null,"url":null,"abstract":"<p><p>High-frequency electric pulse signals are often applied to stimulate functional materials in devices. To investigate the relationship between materials structure and dynamic behavior under high-frequency electric excitation, the stroboscopic imaging mode is widely used in a transmission electron microscope (TEM). From a technical point of view, it is crucial to quantitatively determine high-frequency attenuation in an electric-pulse-excited stroboscopic TEM. Here, we propose the quantitative method to evaluate the voltage attenuation by using magnification variation of defocused bright-field transmission electron microscopy images in a stroboscopic mode when applying high-frequency electric pulse signals onto a model system of two opposite tungsten tips. The negative voltage excitation possesses higher high-frequency voltage attenuation than the positive voltage excitation due to the possible nonreciprocal transmission of the triangle waves within the circuit between the biasing sample holder and the arbitrary waveform generator. Our approach of high-frequency attenuation determination provides the experimental foundation for quantitative analysis on the dynamic evolution of materials structure and functionality under electric pulse stimuli.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency electric pulse signals are often applied to stimulate functional materials in devices. To investigate the relationship between materials structure and dynamic behavior under high-frequency electric excitation, the stroboscopic imaging mode is widely used in a transmission electron microscope (TEM). From a technical point of view, it is crucial to quantitatively determine high-frequency attenuation in an electric-pulse-excited stroboscopic TEM. Here, we propose the quantitative method to evaluate the voltage attenuation by using magnification variation of defocused bright-field transmission electron microscopy images in a stroboscopic mode when applying high-frequency electric pulse signals onto a model system of two opposite tungsten tips. The negative voltage excitation possesses higher high-frequency voltage attenuation than the positive voltage excitation due to the possible nonreciprocal transmission of the triangle waves within the circuit between the biasing sample holder and the arbitrary waveform generator. Our approach of high-frequency attenuation determination provides the experimental foundation for quantitative analysis on the dynamic evolution of materials structure and functionality under electric pulse stimuli.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
Ameliorative Potential of Carvedilol Versus Platelet-Rich Plasma Against Paclitaxel-Induced Femoral Neuropathy in Wistar Rats: A Light and Electron Microscopic Study. Global Least Squares Algorithm for 3D Elemental Surface Topography Reconstruction Using Quad-Segment Detector in X-ray Spectrometry. Quantitative Analysis of Grain Boundary Segregation of Boron in Steel with Secondary-Ion Mass Spectrometry in Comparison to Atom Probe Tomography. Quantitative Determination of High-Frequency Voltage Attenuation in an Electric-Pulse-Excited Stroboscopic Transmission Electron Microscope. Super-Resolution Ptychography with Small Segmented Detectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1