Paulina N Smaruj, Fahad Kamulegeya, David R Kelley, Geoffrey Fudenberg
{"title":"Interpreting the CTCF-mediated sequence grammar of genome folding with AkitaV2.","authors":"Paulina N Smaruj, Fahad Kamulegeya, David R Kelley, Geoffrey Fudenberg","doi":"10.1371/journal.pcbi.1012824","DOIUrl":null,"url":null,"abstract":"<p><p>Interphase mammalian genomes are folded in 3D with complex locus-specific patterns that impact gene regulation. CTCF (CCCTC-binding factor) is a key architectural protein that binds specific DNA sites, halts cohesin-mediated loop extrusion, and enables long-range chromatin interactions. There are hundreds of thousands of annotated CTCF-binding sites in mammalian genomes; disruptions of some result in distinct phenotypes, while others have no visible effect. Despite their importance, the determinants of which CTCF sites are necessary for genome folding and gene regulation remain unclear. Here, we update and utilize Akita, a convolutional neural network model, to extract the sequence preferences and grammar of CTCF contributing to genome folding. Our analyses of individual CTCF sites reveal four predictions: (i) only a small fraction of genomic sites are impactful; (ii) impact is highly dependent on sequences flanking the core CTCF binding motif; (iii) core and flanking nucleotides contribute largely additively to the overall impact of a site; (iv) sites created as combinations of different core and flanking sequences have impacts proportional to the product of their average impacts, i.e. they are broadly compatible. Our analysis of collections of CTCF sites make two predictions for multi-motif grammar: (i) insulation strength depends on the number of CTCF sites within a cluster, and (ii) pattern formation is governed by the orientation and spacing of these sites, rather than any inherent specialization of the CTCF motifs themselves. In sum, we present a framework for using neural network models to probe the sequences instructing genome folding and provide a number of predictions to guide future experimental inquiries.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 2","pages":"e1012824"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012824","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Interphase mammalian genomes are folded in 3D with complex locus-specific patterns that impact gene regulation. CTCF (CCCTC-binding factor) is a key architectural protein that binds specific DNA sites, halts cohesin-mediated loop extrusion, and enables long-range chromatin interactions. There are hundreds of thousands of annotated CTCF-binding sites in mammalian genomes; disruptions of some result in distinct phenotypes, while others have no visible effect. Despite their importance, the determinants of which CTCF sites are necessary for genome folding and gene regulation remain unclear. Here, we update and utilize Akita, a convolutional neural network model, to extract the sequence preferences and grammar of CTCF contributing to genome folding. Our analyses of individual CTCF sites reveal four predictions: (i) only a small fraction of genomic sites are impactful; (ii) impact is highly dependent on sequences flanking the core CTCF binding motif; (iii) core and flanking nucleotides contribute largely additively to the overall impact of a site; (iv) sites created as combinations of different core and flanking sequences have impacts proportional to the product of their average impacts, i.e. they are broadly compatible. Our analysis of collections of CTCF sites make two predictions for multi-motif grammar: (i) insulation strength depends on the number of CTCF sites within a cluster, and (ii) pattern formation is governed by the orientation and spacing of these sites, rather than any inherent specialization of the CTCF motifs themselves. In sum, we present a framework for using neural network models to probe the sequences instructing genome folding and provide a number of predictions to guide future experimental inquiries.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.