Rodrigo Osuna-Orozco, Edward Castillo, Kameron Decker Harris, Samantha R Santacruz
{"title":"Identification of recurrent dynamics in distributed neural populations.","authors":"Rodrigo Osuna-Orozco, Edward Castillo, Kameron Decker Harris, Samantha R Santacruz","doi":"10.1371/journal.pcbi.1012816","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale recordings of neural activity over broad anatomical areas with high spatial and temporal resolution are increasingly common in modern experimental neuroscience. Recently, recurrent switching dynamical systems have been used to tackle the scale and complexity of these data. However, an important challenge remains in providing insights into the existence and structure of recurrent linear dynamics in neural time series data. Here we test a scalable approach to time-varying autoregression with low-rank tensors to recover the recurrent dynamics in stochastic neural mass models with multiple stable attractors. We demonstrate that the parsimonious representation of time-varying system matrices in terms of temporal modes can recover the attractor structure of simple systems via clustering. We then consider simulations based on a human brain connectivity matrix in high and low global connection strength regimes, and reveal the hierarchical clustering structure of the dynamics. Finally, we explain the impact of the forecast time delay on the estimation of the underlying rank and temporal variability of the time series dynamics. This study illustrates that prediction error minimization is not sufficient to recover meaningful dynamic structure and that it is crucial to account for the three key timescales arising from dynamics, noise processes, and attractor switching.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 2","pages":"e1012816"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012816","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale recordings of neural activity over broad anatomical areas with high spatial and temporal resolution are increasingly common in modern experimental neuroscience. Recently, recurrent switching dynamical systems have been used to tackle the scale and complexity of these data. However, an important challenge remains in providing insights into the existence and structure of recurrent linear dynamics in neural time series data. Here we test a scalable approach to time-varying autoregression with low-rank tensors to recover the recurrent dynamics in stochastic neural mass models with multiple stable attractors. We demonstrate that the parsimonious representation of time-varying system matrices in terms of temporal modes can recover the attractor structure of simple systems via clustering. We then consider simulations based on a human brain connectivity matrix in high and low global connection strength regimes, and reveal the hierarchical clustering structure of the dynamics. Finally, we explain the impact of the forecast time delay on the estimation of the underlying rank and temporal variability of the time series dynamics. This study illustrates that prediction error minimization is not sufficient to recover meaningful dynamic structure and that it is crucial to account for the three key timescales arising from dynamics, noise processes, and attractor switching.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.