Wetlands as a solution to water browning: A 3-year efficiency assessment of outdoor mesocosms.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2025-02-01 DOI:10.1002/wer.70008
Henric Djerf
{"title":"Wetlands as a solution to water browning: A 3-year efficiency assessment of outdoor mesocosms.","authors":"Henric Djerf","doi":"10.1002/wer.70008","DOIUrl":null,"url":null,"abstract":"<p><p>Water browning is the phenomenon of increasing discoloration in lakes and water courses due to the leaching of organic matter from soils. This process has ecological, economic, and social implications, such as affecting light penetration, oxygen levels, nutrient cycling, drinking water quality, and recreational use. This study investigated the potential of wetlands as a natural solution to mitigate water browning by reducing organic matter and iron. Six mesocosms in pilot scale were set up and studied for 3 years for their efficiency to reduce water color, with sampling every 14th day. Parameters measured were the changes in water color, dissolved organic carbon, iron, pH, and conductivity over 3 years, under different hydrological and climatic conditions. The results showed that wetlands can decrease water browning by retaining organic matter and iron, especially in vegetated systems. This study showed that long retention times with vegetated shallow systems were needed to reduce the water color by 47%. The decrease of color was primarily due to reduction of iron that decreased by 66%, while the dissolved organic carbon (DOC) concentration decreased by only 6%. These findings highlight the potential of constructed wetlands as a valuable tool for improving water quality and mitigating the impacts of water browning, though further optimization of wetland design and integration with broader land-use strategies is needed to address this complex issue effectively. PRACTITIONER POINTS: Constructed wetlands can mitigate brownification, especially with long retention times and shallow vegetated wetlands. Iron reduction is more strongly correlated with colour reduction than with DOC reduction. Vegetated constructed wetlands reduced the colour concentration of inflow water by 47% after a 14-day retention time. Wetlands need a long retention time to reduce colour, and should be placed far upstream in the watershed. Vegetated systems may use alternative pathways, like biofilm formation, to reduce humic substances, independent of UV exposure.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70008"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70008","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water browning is the phenomenon of increasing discoloration in lakes and water courses due to the leaching of organic matter from soils. This process has ecological, economic, and social implications, such as affecting light penetration, oxygen levels, nutrient cycling, drinking water quality, and recreational use. This study investigated the potential of wetlands as a natural solution to mitigate water browning by reducing organic matter and iron. Six mesocosms in pilot scale were set up and studied for 3 years for their efficiency to reduce water color, with sampling every 14th day. Parameters measured were the changes in water color, dissolved organic carbon, iron, pH, and conductivity over 3 years, under different hydrological and climatic conditions. The results showed that wetlands can decrease water browning by retaining organic matter and iron, especially in vegetated systems. This study showed that long retention times with vegetated shallow systems were needed to reduce the water color by 47%. The decrease of color was primarily due to reduction of iron that decreased by 66%, while the dissolved organic carbon (DOC) concentration decreased by only 6%. These findings highlight the potential of constructed wetlands as a valuable tool for improving water quality and mitigating the impacts of water browning, though further optimization of wetland design and integration with broader land-use strategies is needed to address this complex issue effectively. PRACTITIONER POINTS: Constructed wetlands can mitigate brownification, especially with long retention times and shallow vegetated wetlands. Iron reduction is more strongly correlated with colour reduction than with DOC reduction. Vegetated constructed wetlands reduced the colour concentration of inflow water by 47% after a 14-day retention time. Wetlands need a long retention time to reduce colour, and should be placed far upstream in the watershed. Vegetated systems may use alternative pathways, like biofilm formation, to reduce humic substances, independent of UV exposure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Enhancing naphthenic acid attenuation in mesocosm wetlands: The role of temperature, plant species, and microbial communities. Estimating water scarcity risks under climate change: A provincial perspective in China. Evaluation of biofilm scouring methods on the nitrification efficiency in a pilot-scale membrane-aerated biofilm reactor. Better left unsettled: Suspended air flotation for footprint-optimized management of thin primary and blended solids. Correction to "The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1