Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2025-02-05 DOI:10.1148/ryai.240039
Marit A Martiniussen, Marthe Larsen, Tone Hovda, Merete U Kristiansen, Fredrik A Dahl, Line Eikvil, Olav Brautaset, Atle Bjørnerud, Vessela Kristensen, Marie B Bergan, Solveig Hofvind
{"title":"Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway.","authors":"Marit A Martiniussen, Marthe Larsen, Tone Hovda, Merete U Kristiansen, Fredrik A Dahl, Line Eikvil, Olav Brautaset, Atle Bjørnerud, Vessela Kristensen, Marie B Bergan, Solveig Hofvind","doi":"10.1148/ryai.240039","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate cancer detection and marker placement accuracy of two artificial intelligence (AI) models developed for interpretation of screening mammograms. Materials and Methods This retrospective study included data from 129 434 screening examinations (all female, mean age 59.2, SD = 5.8) performed between January 2008 and December 2018 in BreastScreen Norway. Model A was commercially available and B was an in-house model. Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CIs) were calculated. The study defined 3.2% and 11.1% of the examinations with the highest AI scores as positive, threshold 1 and 2, respectively. A radiologic review assessed location of AI markings and classified interval cancers as true or false negative. Results The AUC was 0.93 (95% CI: 0.92-0.94) for model A and B when including screen-detected and interval cancers. Model A identified 82.5% (611/741) of the screen-detected cancers at threshold 1 and 92.4% (685/741) at threshold 2. For model B, the numbers were 81.8% (606/741) and 93.7% (694/741), respectively. The AI markings were correctly localized for all screen-detected cancers identified by both models and 82% (56/68) of the interval cancers for model A and 79% (54/68) for B. At the review, 21.6% (45/208) of the interval cancers were identified at the preceding screening by either or both models, correctly localized and classified as false negative (<i>n</i> = 17) or with minimal signs of malignancy (<i>n</i> = 28). Conclusion Both AI models showed promising performance for cancer detection on screening mammograms. The AI markings corresponded well to the true cancer locations. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240039"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate cancer detection and marker placement accuracy of two artificial intelligence (AI) models developed for interpretation of screening mammograms. Materials and Methods This retrospective study included data from 129 434 screening examinations (all female, mean age 59.2, SD = 5.8) performed between January 2008 and December 2018 in BreastScreen Norway. Model A was commercially available and B was an in-house model. Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CIs) were calculated. The study defined 3.2% and 11.1% of the examinations with the highest AI scores as positive, threshold 1 and 2, respectively. A radiologic review assessed location of AI markings and classified interval cancers as true or false negative. Results The AUC was 0.93 (95% CI: 0.92-0.94) for model A and B when including screen-detected and interval cancers. Model A identified 82.5% (611/741) of the screen-detected cancers at threshold 1 and 92.4% (685/741) at threshold 2. For model B, the numbers were 81.8% (606/741) and 93.7% (694/741), respectively. The AI markings were correctly localized for all screen-detected cancers identified by both models and 82% (56/68) of the interval cancers for model A and 79% (54/68) for B. At the review, 21.6% (45/208) of the interval cancers were identified at the preceding screening by either or both models, correctly localized and classified as false negative (n = 17) or with minimal signs of malignancy (n = 28). Conclusion Both AI models showed promising performance for cancer detection on screening mammograms. The AI markings corresponded well to the true cancer locations. ©RSNA, 2025.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Performance of Lung Cancer Prediction Models for Screening-detected, Incidental, and Biopsied Pulmonary Nodules. Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway. Physics-Informed Autoencoder for Prostate Tissue Microstructure Profiling with Hybrid Multidimensional MRI. A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. Evaluating the Impact of Changes in Artificial Intelligence-derived Case Scores over Time on Digital Breast Tomosynthesis Screening Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1