Using routinely available electronic health record data elements to develop and validate a digital divide risk score.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2025-02-04 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooaf004
Jamie M Faro, Emily Obermiller, Corey Obermiller, Katy E Trinkley, Garth Wright, Rajani S Sadasivam, Kristie L Foley, Sarah L Cutrona, Thomas K Houston
{"title":"Using routinely available electronic health record data elements to develop and validate a digital divide risk score.","authors":"Jamie M Faro, Emily Obermiller, Corey Obermiller, Katy E Trinkley, Garth Wright, Rajani S Sadasivam, Kristie L Foley, Sarah L Cutrona, Thomas K Houston","doi":"10.1093/jamiaopen/ooaf004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital health (patient portals, remote monitoring devices, video visits) is a routine part of health care, though the digital divide may affect access.</p><p><strong>Objectives: </strong>To test and validate an electronic health record (EHR) screening tool to identify patients at risk of the digital divide.</p><p><strong>Materials and methods: </strong>We conducted a retrospective EHR data extraction and cross-sectional survey of participants within 1 health care system. We identified 4 potential digital divide markers from the EHR: (1) mobile phone number, (2) email address, (3) active patient portal, and (4) >2 patient portal logins in the last year. We mailed surveys to patients at higher risk (missing all 4 markers), intermediate risk (missing 1-3 markers), or lower risk (missing no markers). Combining EHR and survey data, we summarized the markers into risk scores and evaluated its association with patients' report of lack of Internet access. Then, we assessed the association of EHR markers and eHealth Literacy Scale survey outcomes.</p><p><strong>Results: </strong>A total of 249 patients (39.4%) completed the survey (53%>65 years, 51% female, 50% minority race, 55% rural/small town residents, 46% private insurance, 45% Medicare). Individually, the 4 EHR markers had high sensitivity (range 81%-95%) and specificity (range 65%-79%) compared with survey responses. The EHR marker-based score (high risk, intermediate risk, low risk) predicted absence of Internet access (receiver operator characteristics <i>c</i>-statistic=0.77). Mean digital health literacy scores significantly decreased as her marker digital divide risk increased (<i>P</i>  <.001).</p><p><strong>Discussion: </strong>Each of the four EHR markers (Cell phone, email address, patient portal active, and patient portal actively used) compared with self-report yielded high levels of sensitivity, specificity, and overall accuracy.</p><p><strong>Conclusion: </strong>Using these markers, health care systems could target interventions and implementation strategies to support equitable patient access to digital health.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooaf004"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Digital health (patient portals, remote monitoring devices, video visits) is a routine part of health care, though the digital divide may affect access.

Objectives: To test and validate an electronic health record (EHR) screening tool to identify patients at risk of the digital divide.

Materials and methods: We conducted a retrospective EHR data extraction and cross-sectional survey of participants within 1 health care system. We identified 4 potential digital divide markers from the EHR: (1) mobile phone number, (2) email address, (3) active patient portal, and (4) >2 patient portal logins in the last year. We mailed surveys to patients at higher risk (missing all 4 markers), intermediate risk (missing 1-3 markers), or lower risk (missing no markers). Combining EHR and survey data, we summarized the markers into risk scores and evaluated its association with patients' report of lack of Internet access. Then, we assessed the association of EHR markers and eHealth Literacy Scale survey outcomes.

Results: A total of 249 patients (39.4%) completed the survey (53%>65 years, 51% female, 50% minority race, 55% rural/small town residents, 46% private insurance, 45% Medicare). Individually, the 4 EHR markers had high sensitivity (range 81%-95%) and specificity (range 65%-79%) compared with survey responses. The EHR marker-based score (high risk, intermediate risk, low risk) predicted absence of Internet access (receiver operator characteristics c-statistic=0.77). Mean digital health literacy scores significantly decreased as her marker digital divide risk increased (P  <.001).

Discussion: Each of the four EHR markers (Cell phone, email address, patient portal active, and patient portal actively used) compared with self-report yielded high levels of sensitivity, specificity, and overall accuracy.

Conclusion: Using these markers, health care systems could target interventions and implementation strategies to support equitable patient access to digital health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:数字医疗(患者门户网站、远程监控设备、视频访问)是医疗保健的常规组成部分,但数字鸿沟可能会影响患者的使用:测试并验证一种电子健康记录(EHR)筛查工具,以识别面临数字鸿沟风险的患者:我们对 1 个医疗保健系统的参与者进行了回顾性电子病历数据提取和横断面调查。我们从电子病历中确定了 4 个潜在的数字鸿沟标记:(1) 手机号码;(2) 电子邮件地址;(3) 活跃的患者门户网站;(4) 去年登录患者门户网站超过 2 次。我们向高风险(缺少所有 4 个标记)、中风险(缺少 1-3 个标记)或低风险(没有标记)患者邮寄了调查问卷。结合电子病历和调查数据,我们将标记总结为风险评分,并评估其与患者报告的无法访问互联网的关联性。然后,我们评估了电子健康记录标记与电子健康素养量表调查结果之间的关联:共有 249 名患者(39.4%)完成了调查(53% 年龄大于 65 岁,51% 为女性,50% 为少数民族,55% 为农村/小城镇居民,46% 有私人保险,45% 有医疗保险)。与调查回答相比,4 个电子病历标记具有较高的灵敏度(范围为 81%-95%)和特异性(范围为 65%-79%)。基于电子病历标记的评分(高风险、中度风险、低风险)可预测未上网情况(接收者运算特征 c 统计量=0.77)。随着标记数字鸿沟风险的增加,数字健康素养的平均得分显著下降(P 讨论):与自我报告相比,四种电子健康记录标记(手机、电子邮件地址、活跃的患者门户网站和积极使用的患者门户网站)均具有较高的灵敏度、特异性和总体准确性:利用这些指标,医疗保健系统可以有针对性地采取干预措施和实施策略,以支持患者公平地获得数字医疗服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Towards human-AI collaboration in radiology: a multidimensional evaluation of the acceptability of AI for chest radiograph analysis in supporting pulmonary tuberculosis diagnosis. Using routinely available electronic health record data elements to develop and validate a digital divide risk score. Accuracy of privacy preserving record linkage for real world data in the United States: a systemic review. Evaluating dimensionality reduction of comorbidities for predictive modeling in individuals with neurofibromatosis type 1. pyDeid: an improved, fast, flexible, and generalizable rule-based approach for deidentification of free-text medical records.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1