Global progress in competitive co-evolution: a systematic comparison of alternative methods.

IF 2.9 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2025-01-21 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1470886
Stefano Nolfi, Paolo Pagliuca
{"title":"Global progress in competitive co-evolution: a systematic comparison of alternative methods.","authors":"Stefano Nolfi, Paolo Pagliuca","doi":"10.3389/frobt.2024.1470886","DOIUrl":null,"url":null,"abstract":"<p><p>The usage of broad sets of training data is paramount to evolve adaptive agents. In this respect, competitive co-evolution is a widespread technique in which the coexistence of different learning agents fosters adaptation, which in turn makes agents experience continuously varying environmental conditions. However, a major pitfall is related to the emergence of endless limit cycles where agents discover, forget and rediscover similar strategies during evolution. In this work, we investigate the use of competitive co-evolution for synthesizing progressively better solutions. Specifically, we introduce a set of methods to measure historical and global progress. We discuss the factors that facilitate genuine progress. Finally, we compare the efficacy of four qualitatively different algorithms, including two newly introduced methods. The selected algorithms promote genuine progress by creating an archive of opponents used to evaluate evolving individuals, generating archives that include high-performing and well-differentiated opponents, identifying and discarding variations that lead to local progress only (i.e., progress against the opponents experienced and retrogressing against others). The results obtained in a predator-prey scenario, commonly used to study competitive evolution, demonstrate that all the considered methods lead to global progress in the long term. However, the rate of progress and the ratio of progress versus retrogressions vary significantly among algorithms. In particular, our outcomes indicate that the Generalist method introduced in this work outperforms the other three considered methods and represents the only algorithm capable of producing global progress during evolution.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1470886"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1470886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of broad sets of training data is paramount to evolve adaptive agents. In this respect, competitive co-evolution is a widespread technique in which the coexistence of different learning agents fosters adaptation, which in turn makes agents experience continuously varying environmental conditions. However, a major pitfall is related to the emergence of endless limit cycles where agents discover, forget and rediscover similar strategies during evolution. In this work, we investigate the use of competitive co-evolution for synthesizing progressively better solutions. Specifically, we introduce a set of methods to measure historical and global progress. We discuss the factors that facilitate genuine progress. Finally, we compare the efficacy of four qualitatively different algorithms, including two newly introduced methods. The selected algorithms promote genuine progress by creating an archive of opponents used to evaluate evolving individuals, generating archives that include high-performing and well-differentiated opponents, identifying and discarding variations that lead to local progress only (i.e., progress against the opponents experienced and retrogressing against others). The results obtained in a predator-prey scenario, commonly used to study competitive evolution, demonstrate that all the considered methods lead to global progress in the long term. However, the rate of progress and the ratio of progress versus retrogressions vary significantly among algorithms. In particular, our outcomes indicate that the Generalist method introduced in this work outperforms the other three considered methods and represents the only algorithm capable of producing global progress during evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Socially interactive industrial robots: a PAD model of flow for emotional co-regulation. Editorial: Latest trends in bio-inspired medical robotics: structural design, manufacturing, sensing, actuation and control. Editorial: Haptic training simulation, volume III. Vision-based manipulation of transparent plastic bags in industrial setups. Global progress in competitive co-evolution: a systematic comparison of alternative methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1