Machine learning for predicting severe dengue in Puerto Rico.

IF 8.1 1区 医学 Infectious Diseases of Poverty Pub Date : 2025-02-04 DOI:10.1186/s40249-025-01273-0
Zachary J Madewell, Dania M Rodriguez, Maile B Thayer, Vanessa Rivera-Amill, Gabriela Paz-Bailey, Laura E Adams, Joshua M Wong
{"title":"Machine learning for predicting severe dengue in Puerto Rico.","authors":"Zachary J Madewell, Dania M Rodriguez, Maile B Thayer, Vanessa Rivera-Amill, Gabriela Paz-Bailey, Laura E Adams, Joshua M Wong","doi":"10.1186/s40249-025-01273-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limited sensitivity and specificity. This study aims to evaluate machine learning (ML) model performance compared to WHO-recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto Rico.</p><p><strong>Methods: </strong>We analyzed data from Puerto Rico's Sentinel Enhanced Dengue Surveillance System (May 2012-August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using fivefold cross-validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity. A subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited settings. An AUC-ROC value of 0.5 indicates no discriminative power, while values closer to 1.0 reflect better performance.</p><p><strong>Results: </strong>Among the 1708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient boosting algorithms achieved the highest predictive performance, with an AUC-ROC of 97.1% (95% CI: 96.0-98.3%) for CatBoost using the full 40-variable feature set. Feature importance analysis identified hemoconcentration (≥ 20% increase during illness or ≥ 20% above baseline for age and sex), leukopenia (white blood cell count < 4000/mm<sup>3</sup>), and timing of presentation at 4-6 days post-symptom onset as key predictors. When excluding hemoconcentration and leukopenia, the CatBoost AUC-ROC was 96.7% (95% CI: 95.5-98.0%), demonstrating minimal reduction in performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥ 3 warning signs improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC of 74.0%.</p><p><strong>Conclusions: </strong>ML models, especially gradient boosting algorithms, outperformed traditional warning signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration confirmed the models' applicability in resource-limited settings, where access to laboratory data may be limited.</p>","PeriodicalId":48820,"journal":{"name":"Infectious Diseases of Poverty","volume":"14 1","pages":"5"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases of Poverty","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40249-025-01273-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limited sensitivity and specificity. This study aims to evaluate machine learning (ML) model performance compared to WHO-recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto Rico.

Methods: We analyzed data from Puerto Rico's Sentinel Enhanced Dengue Surveillance System (May 2012-August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using fivefold cross-validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity. A subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited settings. An AUC-ROC value of 0.5 indicates no discriminative power, while values closer to 1.0 reflect better performance.

Results: Among the 1708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient boosting algorithms achieved the highest predictive performance, with an AUC-ROC of 97.1% (95% CI: 96.0-98.3%) for CatBoost using the full 40-variable feature set. Feature importance analysis identified hemoconcentration (≥ 20% increase during illness or ≥ 20% above baseline for age and sex), leukopenia (white blood cell count < 4000/mm3), and timing of presentation at 4-6 days post-symptom onset as key predictors. When excluding hemoconcentration and leukopenia, the CatBoost AUC-ROC was 96.7% (95% CI: 95.5-98.0%), demonstrating minimal reduction in performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥ 3 warning signs improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC of 74.0%.

Conclusions: ML models, especially gradient boosting algorithms, outperformed traditional warning signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration confirmed the models' applicability in resource-limited settings, where access to laboratory data may be limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Infectious Diseases of Poverty
Infectious Diseases of Poverty INFECTIOUS DISEASES-
自引率
1.20%
发文量
368
期刊介绍: Infectious Diseases of Poverty is an open access, peer-reviewed journal that focuses on addressing essential public health questions related to infectious diseases of poverty. The journal covers a wide range of topics including the biology of pathogens and vectors, diagnosis and detection, treatment and case management, epidemiology and modeling, zoonotic hosts and animal reservoirs, control strategies and implementation, new technologies and application. It also considers the transdisciplinary or multisectoral effects on health systems, ecohealth, environmental management, and innovative technology. The journal aims to identify and assess research and information gaps that hinder progress towards new interventions for public health problems in the developing world. Additionally, it provides a platform for discussing these issues to advance research and evidence building for improved public health interventions in poor settings.
期刊最新文献
Association between Loa loa microfilaremia and anatomical hyposplenia in a rural area of the Republic of Congo: a population-based cross-sectional study. Global progress, challenges and strategies in eliminating public threat of viral hepatitis. Environmental, socioeconomic, and sociocultural drivers of monkeypox transmission in the Democratic Republic of the Congo: a One Health perspective. Machine learning for predicting severe dengue in Puerto Rico. Post-COVID-19 resurgence of scabies' cases in the Lazio Region, Italy: a new emerging public health threat?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1