Breast cancer image classification based on H&E staining using a causal attention graph neural network model.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-07-01 Epub Date: 2025-02-04 DOI:10.1007/s11517-025-03303-3
Xiaoya Chang, Zhongrong Zhang, Jianguo Sun, Kang Lin, Ping'an Song
{"title":"Breast cancer image classification based on H&E staining using a causal attention graph neural network model.","authors":"Xiaoya Chang, Zhongrong Zhang, Jianguo Sun, Kang Lin, Ping'an Song","doi":"10.1007/s11517-025-03303-3","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer image classification remains a challenging task due to the high-resolution nature of pathological images and their complex feature distributions. Graph neural networks (GNNs) offer promising capabilities to capture local structural information but often suffer from limited generalization and reliance on shortcut features. This study proposes a novel causal discovery attention-based graph neural network (CDA-GNN) model. The model converts high-resolution image data into graph data using superpixel segmentation and employs a causal attention mechanism to identify and utilize key causal features. A backdoor adjustment strategy further disentangles causal features from shortcut features, enhancing model interpretability and robustness. Experimental evaluations on the 2018 BACH breast cancer image dataset demonstrate that CDA-GNN achieves a classification accuracy of 86.36%. Additional metrics, including F1-score and ROC, validate the superior performance and generalization of the proposed approach. The CDA-GNN model, with its powerful automated cancer image analysis capabilities and strong interpretability, provides an effective tool for clinical applications. It significantly reduces the workload of healthcare professionals while facilitating the early detection and diagnosis of breast cancer, thereby improving diagnostic efficiency and accuracy.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"1965-1979"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03303-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer image classification remains a challenging task due to the high-resolution nature of pathological images and their complex feature distributions. Graph neural networks (GNNs) offer promising capabilities to capture local structural information but often suffer from limited generalization and reliance on shortcut features. This study proposes a novel causal discovery attention-based graph neural network (CDA-GNN) model. The model converts high-resolution image data into graph data using superpixel segmentation and employs a causal attention mechanism to identify and utilize key causal features. A backdoor adjustment strategy further disentangles causal features from shortcut features, enhancing model interpretability and robustness. Experimental evaluations on the 2018 BACH breast cancer image dataset demonstrate that CDA-GNN achieves a classification accuracy of 86.36%. Additional metrics, including F1-score and ROC, validate the superior performance and generalization of the proposed approach. The CDA-GNN model, with its powerful automated cancer image analysis capabilities and strong interpretability, provides an effective tool for clinical applications. It significantly reduces the workload of healthcare professionals while facilitating the early detection and diagnosis of breast cancer, thereby improving diagnostic efficiency and accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用因果注意图神经网络模型,基于 H&E 染色进行乳腺癌图像分类。
由于病理图像的高分辨率特性及其复杂的特征分布,乳腺癌图像分类仍然是一项具有挑战性的任务。图神经网络(gnn)提供了捕获局部结构信息的良好能力,但通常泛化有限且依赖于快捷特征。本研究提出了一种新的因果发现注意图神经网络(CDA-GNN)模型。该模型利用超像素分割将高分辨率图像数据转换为图形数据,并采用因果注意机制识别和利用关键因果特征。后门调整策略进一步将因果特征与捷径特征分离开来,增强了模型的可解释性和鲁棒性。在2018年BACH乳腺癌图像数据集上的实验评估表明,da - gnn的分类准确率达到了86.36%。其他指标,包括f1评分和ROC,验证了所提出方法的优越性能和泛化性。CDA-GNN模型具有强大的自动化肿瘤图像分析能力和较强的可解释性,为临床应用提供了有效的工具。它大大减少了医护人员的工作量,同时促进了乳腺癌的早期发现和诊断,从而提高了诊断效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Microwave technology for detecting traumatic chest injuries in a porcine model. Variability-Adaptive IV insertion training with dual haptic feedback in mixed reality. A mobile tool for static standing posture assessment using accurate 3D body reconstruction. Papanicolaou stain unmixing for RGB image using weighted nucleus sparsity and total variation regularization. Accurate identification of polyps in screening colonoscopies using convolutional neural networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1