Yeo E Kim, Maria Dobko, Haomiao Li, Tianlan Shao, Preethi Periyakoil, Courtney Tipton, Christine Colasacco, Aisha Serpedin, Olivier Elemento, Mert Sabuncu, Michael Pitman, Lucian Sulica, Anaïs Rameau
{"title":"A Deep-Learning Model for Multi-class Audio Classification of Vocal Fold Pathologies in Office Stroboscopy.","authors":"Yeo E Kim, Maria Dobko, Haomiao Li, Tianlan Shao, Preethi Periyakoil, Courtney Tipton, Christine Colasacco, Aisha Serpedin, Olivier Elemento, Mert Sabuncu, Michael Pitman, Lucian Sulica, Anaïs Rameau","doi":"10.1002/lary.32036","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and validate a deep-learning classifier trained on voice data extracted from videolaryngostroboscopy recordings, differentiating between three different vocal fold (VF) states: healthy (HVF), unilateral paralysis (UVFP), and VF lesions, including benign and malignant pathologies.</p><p><strong>Methods: </strong>Patients with UVFP (n = 105), VF lesions (n = 63), and HVF (n = 41) were retrospectively identified. Voice samples were extracted from stroboscopic videos (Pentax Laryngeal Strobe Model 9400), including sustained /i/ phonation, pitch glide, and /i/ sniff task. Extracted audio files were converted into Mel-spectrograms. Voice samples were independently divided into training (80%), validation (10%), and test (10%) by patient. Pretrained ResNet18 models were trained to classify (1) HVF and pathological VF (lesions and UVFP), and (2) HVF, UVFP, and VF lesions. Both classifiers were further validated on an external dataset consisting of 12 UVFP, 13 VF lesions, and 15 HVF patients. Model performances were evaluated by accuracy and F1-score.</p><p><strong>Results: </strong>When evaluated on a hold-out test set, the binary classifier demonstrated stronger performance compared to the multi-class classifier (accuracy 83% vs. 40%; F1-score 0.90 vs. 0.36). When evaluated on an external dataset, the binary classifier achieved an accuracy of 63% and F1-score of 0.48, compared to 35% and 0.25 for the multi-class classifier.</p><p><strong>Conclusions: </strong>Deep-learning classifiers differentiating HVF, UVFP, and VF lesions were developed using voice data from stroboscopic videos. Although healthy and pathological voice were differentiated with moderate accuracy, multi-class classification lowered model performance. The model performed poorly on an external dataset. Voice captured in stroboscopic videos may have limited diagnostic value, though further studies are needed.</p><p><strong>Level of evidence: </strong>4 Laryngoscope, 2025.</p>","PeriodicalId":49921,"journal":{"name":"Laryngoscope","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laryngoscope","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lary.32036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To develop and validate a deep-learning classifier trained on voice data extracted from videolaryngostroboscopy recordings, differentiating between three different vocal fold (VF) states: healthy (HVF), unilateral paralysis (UVFP), and VF lesions, including benign and malignant pathologies.
Methods: Patients with UVFP (n = 105), VF lesions (n = 63), and HVF (n = 41) were retrospectively identified. Voice samples were extracted from stroboscopic videos (Pentax Laryngeal Strobe Model 9400), including sustained /i/ phonation, pitch glide, and /i/ sniff task. Extracted audio files were converted into Mel-spectrograms. Voice samples were independently divided into training (80%), validation (10%), and test (10%) by patient. Pretrained ResNet18 models were trained to classify (1) HVF and pathological VF (lesions and UVFP), and (2) HVF, UVFP, and VF lesions. Both classifiers were further validated on an external dataset consisting of 12 UVFP, 13 VF lesions, and 15 HVF patients. Model performances were evaluated by accuracy and F1-score.
Results: When evaluated on a hold-out test set, the binary classifier demonstrated stronger performance compared to the multi-class classifier (accuracy 83% vs. 40%; F1-score 0.90 vs. 0.36). When evaluated on an external dataset, the binary classifier achieved an accuracy of 63% and F1-score of 0.48, compared to 35% and 0.25 for the multi-class classifier.
Conclusions: Deep-learning classifiers differentiating HVF, UVFP, and VF lesions were developed using voice data from stroboscopic videos. Although healthy and pathological voice were differentiated with moderate accuracy, multi-class classification lowered model performance. The model performed poorly on an external dataset. Voice captured in stroboscopic videos may have limited diagnostic value, though further studies are needed.
期刊介绍:
The Laryngoscope has been the leading source of information on advances in the diagnosis and treatment of head and neck disorders since 1890. The Laryngoscope is the first choice among otolaryngologists for publication of their important findings and techniques. Each monthly issue of The Laryngoscope features peer-reviewed medical, clinical, and research contributions in general otolaryngology, allergy/rhinology, otology/neurotology, laryngology/bronchoesophagology, head and neck surgery, sleep medicine, pediatric otolaryngology, facial plastics and reconstructive surgery, oncology, and communicative disorders. Contributions include papers and posters presented at the Annual and Section Meetings of the Triological Society, as well as independent papers, "How I Do It", "Triological Best Practice" articles, and contemporary reviews. Theses authored by the Triological Society’s new Fellows as well as papers presented at meetings of the American Laryngological Association are published in The Laryngoscope.
• Broncho-esophagology
• Communicative disorders
• Head and neck surgery
• Plastic and reconstructive facial surgery
• Oncology
• Speech and hearing defects