The immediate alteration of cerebellar Glx/GABA and cerebello-thalamo-cortical connectivity in patients with schizophrenia after cerebellar TMS.

IF 3 Q2 PSYCHIATRY Schizophrenia (Heidelberg, Germany) Pub Date : 2025-02-04 DOI:10.1038/s41537-025-00563-8
Chenyang Yao, Youjin Zhao, Qian Zhang, Ziyuan Zhao, Kai Ai, Bo Zhang, Su Lui
{"title":"The immediate alteration of cerebellar Glx/GABA and cerebello-thalamo-cortical connectivity in patients with schizophrenia after cerebellar TMS.","authors":"Chenyang Yao, Youjin Zhao, Qian Zhang, Ziyuan Zhao, Kai Ai, Bo Zhang, Su Lui","doi":"10.1038/s41537-025-00563-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar dysfunction is a key aspect of schizophrenia, with the cerebello-thalamo-cortical (CTC) hyperconnectivity serving as a neural signature. Abnormalities in gamma-aminobutyric acid (GABA) and glutamate + glutamine (Glx) levels also contribute to this pathology. Transcranial magnetic stimulation (TMS) applied to the cerebellum shows potential in alleviating schizophrenia symptoms, possibly by modulating functional connectivity or neurotransmitter levels. This study aims to explore the immediate effects of cerebellar TMS on CTC circuitry and neurotransmitter levels to elucidate its therapeutic mechanisms in schizophrenia.The study involved 19 stable schizophrenia patients and 26 healthy controls, diagnosed according to DSM-V criteria and assessed for symptom severity using the Positive and Negative Syndrome Scale (PANSS). MRI scans were conducted pre- and post-TMS to detect changes in CTC functional connectivity, GABA, Glx, and Glx/GABA. Linear Mixed-Effects Model (LMEM) and two-sample tests were employed to analyze changes in these variables from baseline to post-TMS. Pearson's correlation analysis was conducted to examine the relationships among these variables and their association with PANSS scores. Mediation analyses were employed to investigate whether GABA and/or Glx serve as potential mediators of CTC hyperconnectivity in patients with schizophrenia. Schizophrenia patients exhibit CTC hyperconnectivity, which remains at a relatively stable level after cerebellar TMS. Compared to healthy controls, schizophrenia patients have significantly higher cerebellar GABA levels, and cerebellar GABA has a significant mediation effect on CTC hyperconnectivity in patients. The Glx/GABA ratio was associated with the severity of clinical symptoms in patients, and cerebellar TMS partially normalized this ratio. Our findings demonstrate that aberrant cerebellar GABA levels contribute to CTC hyperconnectivity in schizophrenia. Additionally, our study shows that cerebellar TMS can increase Glx levels in schizophrenia patients, leading to the normalization of the Glx/GABA ratio, which may contribute to the therapeutic effects of TMS in schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"12"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00563-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebellar dysfunction is a key aspect of schizophrenia, with the cerebello-thalamo-cortical (CTC) hyperconnectivity serving as a neural signature. Abnormalities in gamma-aminobutyric acid (GABA) and glutamate + glutamine (Glx) levels also contribute to this pathology. Transcranial magnetic stimulation (TMS) applied to the cerebellum shows potential in alleviating schizophrenia symptoms, possibly by modulating functional connectivity or neurotransmitter levels. This study aims to explore the immediate effects of cerebellar TMS on CTC circuitry and neurotransmitter levels to elucidate its therapeutic mechanisms in schizophrenia.The study involved 19 stable schizophrenia patients and 26 healthy controls, diagnosed according to DSM-V criteria and assessed for symptom severity using the Positive and Negative Syndrome Scale (PANSS). MRI scans were conducted pre- and post-TMS to detect changes in CTC functional connectivity, GABA, Glx, and Glx/GABA. Linear Mixed-Effects Model (LMEM) and two-sample tests were employed to analyze changes in these variables from baseline to post-TMS. Pearson's correlation analysis was conducted to examine the relationships among these variables and their association with PANSS scores. Mediation analyses were employed to investigate whether GABA and/or Glx serve as potential mediators of CTC hyperconnectivity in patients with schizophrenia. Schizophrenia patients exhibit CTC hyperconnectivity, which remains at a relatively stable level after cerebellar TMS. Compared to healthy controls, schizophrenia patients have significantly higher cerebellar GABA levels, and cerebellar GABA has a significant mediation effect on CTC hyperconnectivity in patients. The Glx/GABA ratio was associated with the severity of clinical symptoms in patients, and cerebellar TMS partially normalized this ratio. Our findings demonstrate that aberrant cerebellar GABA levels contribute to CTC hyperconnectivity in schizophrenia. Additionally, our study shows that cerebellar TMS can increase Glx levels in schizophrenia patients, leading to the normalization of the Glx/GABA ratio, which may contribute to the therapeutic effects of TMS in schizophrenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficacy of identifying Treatment-Resistant and non-Treatment-Resistant Schizophrenia using niacin skin flushing response combined with clinical feature. Classification of schizophrenia, bipolar disorder and major depressive disorder with comorbid traits and deep learning algorithms. Identifying neurobiological heterogeneity in clinical high-risk psychosis: a data-driven biotyping approach using resting-state functional connectivity. The immediate alteration of cerebellar Glx/GABA and cerebello-thalamo-cortical connectivity in patients with schizophrenia after cerebellar TMS. Machine learning-based prediction of antipsychotic efficacy from brain gray matter structure in drug-naive first-episode schizophrenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1