Wan Fu, Jianghuang Wang, Tianyu Li, Yuhui Qiao, Zili Zhang, Xiaomin Zhang, Mingkai He, Yan Su, Ziye Zhao, Chen Li, Ronghua Xiao, Yujun Han, Shen Zhang, Zhiqiang Liu, James Lin, Guoqiang Chen, Yang Li, Qing Zhong
{"title":"Persistent activation of TRPM4 triggers necrotic cell death characterized by sodium overload","authors":"Wan Fu, Jianghuang Wang, Tianyu Li, Yuhui Qiao, Zili Zhang, Xiaomin Zhang, Mingkai He, Yan Su, Ziye Zhao, Chen Li, Ronghua Xiao, Yujun Han, Shen Zhang, Zhiqiang Liu, James Lin, Guoqiang Chen, Yang Li, Qing Zhong","doi":"10.1038/s41589-025-01841-3","DOIUrl":null,"url":null,"abstract":"<p>Sodium influx and overload are frequently observed in human tissue injuries. Whether sodium overload imposes a causative effect on necrotic cell death and the mechanism involved are unclear. Here we identify necrocide 1 (NC1) as a compound that induces necrotic cell death through sodium overload, termed NECSO for necrosis by sodium overload. NC1 targets the transient receptor potential cation channel subfamily M member 4 (TRPM4), a nonselective monovalent cation channel, to promote Na<sup>+</sup> influx and necrosis. TRPM4-deficient cells are resistant to NC1-induced NECSO. NC1 specifically activates human TRPM4, not mouse TRPM4, because of differences in a transmembrane region, as revealed by domain swapping and molecular docking. Gain-of-function mutations in human <i>TRPM4</i> linked to cardiac arrhythmias show increased vulnerability to NECSO triggered by NC1 or 2-deoxy-<span>d</span>-glucose. Chemical screening identified NECSO inhibitors that block necrosis induced by NC1 or energy depletion. These findings provide insights into regulated Na<sup>+</sup> influx-mediated necrosis and its implications for disease.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"85 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01841-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium influx and overload are frequently observed in human tissue injuries. Whether sodium overload imposes a causative effect on necrotic cell death and the mechanism involved are unclear. Here we identify necrocide 1 (NC1) as a compound that induces necrotic cell death through sodium overload, termed NECSO for necrosis by sodium overload. NC1 targets the transient receptor potential cation channel subfamily M member 4 (TRPM4), a nonselective monovalent cation channel, to promote Na+ influx and necrosis. TRPM4-deficient cells are resistant to NC1-induced NECSO. NC1 specifically activates human TRPM4, not mouse TRPM4, because of differences in a transmembrane region, as revealed by domain swapping and molecular docking. Gain-of-function mutations in human TRPM4 linked to cardiac arrhythmias show increased vulnerability to NECSO triggered by NC1 or 2-deoxy-d-glucose. Chemical screening identified NECSO inhibitors that block necrosis induced by NC1 or energy depletion. These findings provide insights into regulated Na+ influx-mediated necrosis and its implications for disease.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.