Prioritizing Chemical Features in Non-targeted Analysis through Spatial Trend Analysis: Application to the Identification of Organic Chemicals Subject to Mountain Cold-Trapping

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-02-06 DOI:10.1021/acs.est.4c10049
Xianming Zhang, Faqiang Zhan, Chunyan Hao, Ying-Duan Lei, Frank Wania
{"title":"Prioritizing Chemical Features in Non-targeted Analysis through Spatial Trend Analysis: Application to the Identification of Organic Chemicals Subject to Mountain Cold-Trapping","authors":"Xianming Zhang, Faqiang Zhan, Chunyan Hao, Ying-Duan Lei, Frank Wania","doi":"10.1021/acs.est.4c10049","DOIUrl":null,"url":null,"abstract":"One of the challenges arising during non-targeted analysis (NTA) is that the number of detected chemical features is generally too large for detailed processing and interpretation. Here, we illustrate how the analysis of spatial trends in peak intensities can be an effective tool to prioritize chemical features in NTA. Specifically, features detected by gas chromatography and high-resolution mass spectrometry in soil and air samples, collected along an altitudinal transect on an urban mountain in Canada, were successfully grouped into different categories based on spatial trends with site altitude. The motivation was to identify features whose abundance increases in soil with increasing elevation, as the ability for amplification at higher elevations could characterize contaminants of concern to mountain ecosystems. Potential matching candidates were first selected by comparing empirically detected accurate masses and isotope distributions of chemical features with those in chemical databases. These potential candidates were then ranked by comparing MSMS spectra with fragments predicted in silico. Several highly ranked matches, as well as structurally related compounds, which were largely halogenated methoxylated benzenes and organochlorine pesticides, were then subjected to targeted analysis with analytical standards. Several of these compounds, including pentachloroanisole, tricamba, and 3,4,5-trichloroveratrole, were identified as having spatial patterns consistent with mountain cold-trapping, as evidenced by organic carbon-normalized soil concentrations that show a significant increase with elevation. Our study clearly demonstrated that spatial trend analysis holds considerable promise as a tool to guide chemical identification and prioritization during NTA.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10049","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the challenges arising during non-targeted analysis (NTA) is that the number of detected chemical features is generally too large for detailed processing and interpretation. Here, we illustrate how the analysis of spatial trends in peak intensities can be an effective tool to prioritize chemical features in NTA. Specifically, features detected by gas chromatography and high-resolution mass spectrometry in soil and air samples, collected along an altitudinal transect on an urban mountain in Canada, were successfully grouped into different categories based on spatial trends with site altitude. The motivation was to identify features whose abundance increases in soil with increasing elevation, as the ability for amplification at higher elevations could characterize contaminants of concern to mountain ecosystems. Potential matching candidates were first selected by comparing empirically detected accurate masses and isotope distributions of chemical features with those in chemical databases. These potential candidates were then ranked by comparing MSMS spectra with fragments predicted in silico. Several highly ranked matches, as well as structurally related compounds, which were largely halogenated methoxylated benzenes and organochlorine pesticides, were then subjected to targeted analysis with analytical standards. Several of these compounds, including pentachloroanisole, tricamba, and 3,4,5-trichloroveratrole, were identified as having spatial patterns consistent with mountain cold-trapping, as evidenced by organic carbon-normalized soil concentrations that show a significant increase with elevation. Our study clearly demonstrated that spatial trend analysis holds considerable promise as a tool to guide chemical identification and prioritization during NTA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Impact of Snow on Underground Smoldering Wildfire in Arctic-Boreal Peatlands Prioritizing Chemical Features in Non-targeted Analysis through Spatial Trend Analysis: Application to the Identification of Organic Chemicals Subject to Mountain Cold-Trapping Interplay of Structural Properties and Redox Behavior in CeO2 Nanoparticles: Impact on Reactivity and Bioavailability Predicting Abiotic Reduction Rate Constants of Munition Compounds in Soils Different Inactivation Mechanisms of Staphylococcus aureus and Escherichia coli in Water by Reactive Oxygen and Nitrogen Species Generated from an Argon Plasma Jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1