Predicting Abiotic Reduction Rate Constants of Munition Compounds in Soils

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-02-06 DOI:10.1021/acs.est.4c12872
Paula A. Cárdenas-Hernández, Jimmy Murillo-Gelvez, Juan C. Rincón-Rodríguez, Dominic M. Di Toro, Herbert E. Allen, Richard F. Carbonaro, Pei C. Chiu
{"title":"Predicting Abiotic Reduction Rate Constants of Munition Compounds in Soils","authors":"Paula A. Cárdenas-Hernández, Jimmy Murillo-Gelvez, Juan C. Rincón-Rodríguez, Dominic M. Di Toro, Herbert E. Allen, Richard F. Carbonaro, Pei C. Chiu","doi":"10.1021/acs.est.4c12872","DOIUrl":null,"url":null,"abstract":"We report an empirical poly-parameter linear free energy relationship (LFER) for estimating the mass-normalized rate constants for the abiotic reduction of munition compounds (MC) in soil. A total of 131 kinetic experiments were performed, using three classes of MC (nitroaromatic [TNT, DNAN], nitramine [RDX], and azole [NTO]) and 11 soils having highly varied organic carbon and iron contents and reduced with dithionite to different electron contents. The LFER has the same form as that for MC reduction by Fe<sup>III</sup> (oxyhydr)oxide–Fe<sub>aq</sub><sup>II</sup> redox couples and predicts MC reduction rate constants to within an order of magnitude, using only the aqueous-phase one electron reduction potential (<i>E</i><sub>H</sub><sup>1</sup>) of the MC and the pe and pH of the soil. As previously shown for azoles, which exhibited markedly higher reactivity toward iron than toward carbon reductants relative to all neutral MC, NTO reduction rate depended on soil composition and hence a correction to model prediction was necessary at soil iron-to-carbon mass ratios ≲1. This is the first successful attempt to predict the reduction kinetics of structurally diverse nitro compounds in compositionally complex soils based on their thermodynamic properties. The LFER would be useful in the management/restoration (e.g., natural or enhanced attenuation) of soils impacted by MC or other nitro pollutants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"12 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12872","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report an empirical poly-parameter linear free energy relationship (LFER) for estimating the mass-normalized rate constants for the abiotic reduction of munition compounds (MC) in soil. A total of 131 kinetic experiments were performed, using three classes of MC (nitroaromatic [TNT, DNAN], nitramine [RDX], and azole [NTO]) and 11 soils having highly varied organic carbon and iron contents and reduced with dithionite to different electron contents. The LFER has the same form as that for MC reduction by FeIII (oxyhydr)oxide–FeaqII redox couples and predicts MC reduction rate constants to within an order of magnitude, using only the aqueous-phase one electron reduction potential (EH1) of the MC and the pe and pH of the soil. As previously shown for azoles, which exhibited markedly higher reactivity toward iron than toward carbon reductants relative to all neutral MC, NTO reduction rate depended on soil composition and hence a correction to model prediction was necessary at soil iron-to-carbon mass ratios ≲1. This is the first successful attempt to predict the reduction kinetics of structurally diverse nitro compounds in compositionally complex soils based on their thermodynamic properties. The LFER would be useful in the management/restoration (e.g., natural or enhanced attenuation) of soils impacted by MC or other nitro pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Forest Wildfire Increases the Seasonal Allocation of Soil Labile Carbon Fractions Due to the Transition from Microbial K- to r-Strategists Organophosphate Esters, Sperm Mitochondrial DNA Copy Number, and Semen Quality: A Longitudinal Study with Repeated Measurements Correspondence on “Theoretical Threshold for Estimating the Impact of Ventilation on Materials’ Emissions”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1