Hopping-Phase Ion Bridge Enables Fast Li+ Transport in Functional Garnet-Type Solid-State Battery at Room Temperature

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-05 DOI:10.1002/adma.202415966
Binbin Yang, Nan Chen, Jianing Tian, Lipu Sun, Chenglong Deng, Yanxin Shang, Zixin Liu, Ningning Wu, Liyuan Zhao, Feng Wu, Dingguo Xia, Renjie Chen
{"title":"Hopping-Phase Ion Bridge Enables Fast Li+ Transport in Functional Garnet-Type Solid-State Battery at Room Temperature","authors":"Binbin Yang,&nbsp;Nan Chen,&nbsp;Jianing Tian,&nbsp;Lipu Sun,&nbsp;Chenglong Deng,&nbsp;Yanxin Shang,&nbsp;Zixin Liu,&nbsp;Ningning Wu,&nbsp;Liyuan Zhao,&nbsp;Feng Wu,&nbsp;Dingguo Xia,&nbsp;Renjie Chen","doi":"10.1002/adma.202415966","DOIUrl":null,"url":null,"abstract":"<p>Composite polymer electrolytes (CPEs) containing Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) is widely regarded as leading candidate for high energy density solid-state lithium-metal batteries due to its exceptional ionic conductivity and environmental stability. However, Li<sub>2</sub>CO<sub>3</sub> and LiOH layers at LLZTO surface greatly hinder Li<sup>+</sup> transport between LLZTO-polymer and the electrode–electrolyte interface. Herein, the surface of LLZTO is boronized to obtain functionalized LLZTO, and its conversion mechanism is clarified. By dissolving the crystal structure of cellulose to obtain hopping-phase ion bridge (HPIB), which release the Li<sup>+</sup> transport activity of its oxygen-containing polar functional group (─OH, ─O─). Therefore, a high-throughput ion transporter (HTIT-37) with high ion transfer number (0.86) is prepared by introducing the HPIB into functionalized LLZTO and polyvinylidene fluoride interface by intermolecular hydrogen bond interaction, and it is demonstrated that the HPIB acts as a “highway” for the Li<sup>+</sup> across this heterogeneous interface. Moreover, the HPIB is found to self-adsorb on the SEI surface, leading to fast Li<sup>+</sup> transport kinetics at anode–CPE interface. Thus, the lifespan of Li|HTIT-37|Li is over 8000 h, and the critical current density exceeds 2.3 mA cm<sup>−2</sup>. The LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub>|Li and Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>|Li battery remains stable with the HPIB-enhanced electrode process, proving the application potential of LLZTO-based CPE in high energy density SSLMB.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 11","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415966","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite polymer electrolytes (CPEs) containing Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is widely regarded as leading candidate for high energy density solid-state lithium-metal batteries due to its exceptional ionic conductivity and environmental stability. However, Li2CO3 and LiOH layers at LLZTO surface greatly hinder Li+ transport between LLZTO-polymer and the electrode–electrolyte interface. Herein, the surface of LLZTO is boronized to obtain functionalized LLZTO, and its conversion mechanism is clarified. By dissolving the crystal structure of cellulose to obtain hopping-phase ion bridge (HPIB), which release the Li+ transport activity of its oxygen-containing polar functional group (─OH, ─O─). Therefore, a high-throughput ion transporter (HTIT-37) with high ion transfer number (0.86) is prepared by introducing the HPIB into functionalized LLZTO and polyvinylidene fluoride interface by intermolecular hydrogen bond interaction, and it is demonstrated that the HPIB acts as a “highway” for the Li+ across this heterogeneous interface. Moreover, the HPIB is found to self-adsorb on the SEI surface, leading to fast Li+ transport kinetics at anode–CPE interface. Thus, the lifespan of Li|HTIT-37|Li is over 8000 h, and the critical current density exceeds 2.3 mA cm−2. The LiNi0.5Co0.2Mn0.3O2|Li and Li1.2Ni0.13Co0.13Mn0.54O2|Li battery remains stable with the HPIB-enhanced electrode process, proving the application potential of LLZTO-based CPE in high energy density SSLMB.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跳相离子桥实现室温下功能性石榴石型固态电池中Li+的快速输运
含有Li6.4La3Zr1.4Ta0.6O12 (LLZTO)的复合聚合物电解质(cpe)由于其优异的离子导电性和环境稳定性而被广泛认为是高能量密度固态锂金属电池的主要候选者。然而,LLZTO表面的Li2CO3和LiOH层极大地阻碍了Li+在LLZTO聚合物和电极-电解质界面之间的传输。本文对LLZTO表面进行了渗硼处理,得到了功能化LLZTO,并阐明了其转化机理。通过溶解纤维素的晶体结构得到跳相离子桥(HPIB),从而释放其含氧极性官能团(─OH,─O─)的Li+转运活性。因此,通过分子间氢键相互作用将HPIB引入功能化的LLZTO和聚偏氟乙烯界面,制备了高离子转移数(0.86)的高通量离子转运体hti -37,并证明了HPIB作为Li+通过该非均相界面的“高速公路”。此外,发现HPIB在SEI表面自吸附,导致Li+在阳极- cpe界面的快速传输动力学。因此,Li| hti -37|Li的寿命超过8000 h,临界电流密度超过2.3 mA cm−2。在hpib增强电极工艺下,lii0.5 co0.2 mn0.3 o2 |Li和Li1.2Ni0.13Co0.13Mn0.54O2|Li电池保持稳定,证明了llzto基CPE在高能量密度SSLMB中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics Liquid Metal Microrobots for Magnetically Guided Transvascular Navigation Lattice Mismatched Platinum‐Tellurium@Platinum‐Ruthenium Core@Shell Nanorods Achieve Ultrahigh Alkaline Hydrogen Electrocatalysis for Dual Practical Devices Resonant Interlayer Coupling in NbSe 2 ‐Graphite Epitaxial Moiré Superlattices Dynamic Geminal‐Atom Coordination for Highly Efficient Photo‐Fenton Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1