Chi Zhang , Zhipeng Jiang , Mengdie Sun, Richards Augustin-Lawson, Sun Hwa Kwon, Lin Dong
{"title":"Nature-inspired helical piezoelectric hydrogels for energy harvesting and self-powered human-machine interfaces","authors":"Chi Zhang , Zhipeng Jiang , Mengdie Sun, Richards Augustin-Lawson, Sun Hwa Kwon, Lin Dong","doi":"10.1016/j.nanoen.2025.110755","DOIUrl":null,"url":null,"abstract":"<div><div>Empowering hydrogels with self-powered capabilities addresses the limitations of conventional hydrogels that depend on external power. Among self-powered hydrogels, piezoelectric hydrogels (PHs) stand out for their minimal power consumption and exceptional wearability, making them ideal for wearable energy harvesting and self-powered sensing. However, enhancing the piezoelectric performance of current PHs often sacrifices flexibility due to the addition of stiffer materials, restricting their practical use. Here, we introduce an innovative self-powered dual-network PH with 3D-interconnected cellulose and poly(vinylidene fluoride-trifluoroethylene) (C/P(VDF-TrFE)) microstructures, crafted using a co-solvent method. This dual-network PH offers an exceptional balance of self-powered capability, skin-like flexibility, high strength, and toughness, enabling structural deformation and nature-inspired 3D designs from helices to rings tailored for specific wearable applications. We showcase a helical PH device integrated with a pacemaker lead for cardiac energy harvesting and a smart PH ring functioning as a self-powered human-machine interface. This work presents a straightforward and effective approach to creating self-powered hydrogel devices with advanced 3D architectures for next-generation wearable bioelectronics.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"136 ","pages":"Article 110755"},"PeriodicalIF":16.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525001144","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Empowering hydrogels with self-powered capabilities addresses the limitations of conventional hydrogels that depend on external power. Among self-powered hydrogels, piezoelectric hydrogels (PHs) stand out for their minimal power consumption and exceptional wearability, making them ideal for wearable energy harvesting and self-powered sensing. However, enhancing the piezoelectric performance of current PHs often sacrifices flexibility due to the addition of stiffer materials, restricting their practical use. Here, we introduce an innovative self-powered dual-network PH with 3D-interconnected cellulose and poly(vinylidene fluoride-trifluoroethylene) (C/P(VDF-TrFE)) microstructures, crafted using a co-solvent method. This dual-network PH offers an exceptional balance of self-powered capability, skin-like flexibility, high strength, and toughness, enabling structural deformation and nature-inspired 3D designs from helices to rings tailored for specific wearable applications. We showcase a helical PH device integrated with a pacemaker lead for cardiac energy harvesting and a smart PH ring functioning as a self-powered human-machine interface. This work presents a straightforward and effective approach to creating self-powered hydrogel devices with advanced 3D architectures for next-generation wearable bioelectronics.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.