Rishab N. Iyer, David Favela, Andras Domokos, Guoliang Zhang, Arabo A. Avanes, Samuel J. Carter, Andrian G. Basargin, Alexis R. Davis, Dean J. Tantillo, David E. Olson
{"title":"Efficient and modular synthesis of ibogaine and related alkaloids","authors":"Rishab N. Iyer, David Favela, Andras Domokos, Guoliang Zhang, Arabo A. Avanes, Samuel J. Carter, Andrian G. Basargin, Alexis R. Davis, Dean J. Tantillo, David E. Olson","doi":"10.1038/s41557-024-01714-7","DOIUrl":null,"url":null,"abstract":"<p>Anecdotal reports and preliminary clinical trials suggest that the psychoactive alkaloid ibogaine and its active metabolite noribogaine have powerful anti-addictive properties, producing long-lasting therapeutic effects across a range of substance use disorders and co-occurring neuropsychiatric diseases such as depression and post-traumatic stress disorder. Here we report a gram-scale, seven-step synthesis of ibogaine from pyridine. Key features of this strategy enabled the synthesis of three additional iboga alkaloids, as well as an enantioselective total synthesis of (+)-ibogaine and the construction of four analogues. Biological testing revealed that the unnatural enantiomer of ibogaine does not produce ibogaine-like effects on cortical neuron growth, while (−)-10-fluoroibogamine exhibits exceptional psychoplastogenic properties and is a potent modulator of the serotonin transporter. This work provides a platform for accessing iboga alkaloids and congeners for further biological study.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"41 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01714-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anecdotal reports and preliminary clinical trials suggest that the psychoactive alkaloid ibogaine and its active metabolite noribogaine have powerful anti-addictive properties, producing long-lasting therapeutic effects across a range of substance use disorders and co-occurring neuropsychiatric diseases such as depression and post-traumatic stress disorder. Here we report a gram-scale, seven-step synthesis of ibogaine from pyridine. Key features of this strategy enabled the synthesis of three additional iboga alkaloids, as well as an enantioselective total synthesis of (+)-ibogaine and the construction of four analogues. Biological testing revealed that the unnatural enantiomer of ibogaine does not produce ibogaine-like effects on cortical neuron growth, while (−)-10-fluoroibogamine exhibits exceptional psychoplastogenic properties and is a potent modulator of the serotonin transporter. This work provides a platform for accessing iboga alkaloids and congeners for further biological study.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.