Thibaux Van der Stede, Alexia Van de Loock, Guillermo Turiel, Camilla Hansen, Andrea Tamariz-Ellemann, Max Ullrich, Eline Lievens, Jan Spaas, Nurten Yigit, Jasper Anckaert, Justine Nuytens, Siegrid De Baere, Ruud Van Thienen, Anneleen Weyns, Laurie De Wilde, Peter Van Eenoo, Siska Croubels, John R. Halliwill, Pieter Mestdagh, Erik A. Richter, Wim Derave
{"title":"Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk","authors":"Thibaux Van der Stede, Alexia Van de Loock, Guillermo Turiel, Camilla Hansen, Andrea Tamariz-Ellemann, Max Ullrich, Eline Lievens, Jan Spaas, Nurten Yigit, Jasper Anckaert, Justine Nuytens, Siegrid De Baere, Ruud Van Thienen, Anneleen Weyns, Laurie De Wilde, Peter Van Eenoo, Siska Croubels, John R. Halliwill, Pieter Mestdagh, Erik A. Richter, Wim Derave","doi":"10.1016/j.cmet.2024.12.011","DOIUrl":null,"url":null,"abstract":"Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"55 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.12.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.