{"title":"Unexpected Young's modulus dependence of refractory solute diffusion in NiCoFeCr-based high entropy alloys","authors":"Haoyang Yu, Wei Fang, Tiexu Peng, Chang Liu, Hongxian Xie, Bin Gan, Xin Zhang, Jia Li, Fuxing Yin","doi":"10.1016/j.jmst.2024.12.037","DOIUrl":null,"url":null,"abstract":"Diffusion of solutes significantly affects the coarsening rate of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">&#x3B3;</mi><mo is=\"true\">&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates in precipitation-hardened high entropy alloys (PH-HEAs). In this work, we systematically study the refractory solutes M (Hf, Nb, Ta, Mo, W, Re, Ru) diffusion in face-centered-cubic (FCC) NiCoFeCr lattice through a combination of first-principles calculations, diffusion couples, and coarsening of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">&#x3B3;</mi><mo is=\"true\">&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates experiments. Our calculations reveal that there exists a stronger negative correlation between solute diffusivity and Young's modulus than between solute diffusivity and atomic size; i.e., the higher the Young's modulus, the more difficult solute diffusion is. Based on the electronic structure analysis, the underlying origins for such a relationship could be ascribed to the fact that solutes with high Young's modulus have stronger bonds with neighboring host atoms, less compressibility, and thus poor diffusivity. Afterwards, the main interdiffusion coefficients of three refractory elements with similar atomic sizes and increasing Young's modulus, Mo, W, and Re, at 1150°C in (NiCoFeCr)<sub>92</sub>Al<sub>3</sub>Ti<sub>3</sub>M<sub>2</sub> are, in order of magnitude, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">&#x2DC;</mo></mover><mrow is=\"true\"><mtext is=\"true\">MoMo</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">&#x2DC;</mo></mover><mrow is=\"true\"><mtext is=\"true\">WW</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">&#x2DC;</mo></mover><mrow is=\"true\"><mtext is=\"true\">ReRe</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.586ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -1194.3 11266.5 1544.1\" width=\"26.167ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4D\"></use><use transform=\"scale(0.707)\" x=\"917\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1418\" xlink:href=\"#MJMAIN-4D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2335\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use></g></g></g><g is=\"true\" transform=\"translate(3439,0)\"><use xlink:href=\"#MJMAIN-3E\"></use></g><g is=\"true\" transform=\"translate(4495,0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-57\"></use><use transform=\"scale(0.707)\" x=\"1028\" xlink:href=\"#MJMAIN-57\" y=\"0\"></use></g></g></g><g is=\"true\" transform=\"translate(7383,0)\"><use xlink:href=\"#MJMAIN-3E\"></use></g><g is=\"true\" transform=\"translate(8440,0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-52\"></use><use transform=\"scale(0.707)\" x=\"736\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1181\" xlink:href=\"#MJMAIN-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1917\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">MoMo</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo is=\"true\" linebreak=\"goodbreak\">></mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">WW</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo is=\"true\" linebreak=\"goodbreak\">></mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">ReRe</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">MoMo</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">></mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">WW</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">></mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">ReRe</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup></mrow></math></script></span>, as determined by the diffusion-couple experiments. Further investigations on the coarsening kinetics of precipitates confirmed the additions of refractory elements improve the coarsening resistance of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">&#x3B3;</mi><mo is=\"true\">&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates in the order of Re > W > Mo. The trends in the diffusivity determined by experiment and simulation are in excellent agreement. More importantly, the Young's modulus effect for the diffusion of refractory solutes in HEAs is also carefully analyzed and discussed. Our present findings will give new insights into future design of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">&#x3B3;</mi><mo is=\"true\">&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span>-strengthened HEAs for high-temperature structural applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion of solutes significantly affects the coarsening rate of precipitates in precipitation-hardened high entropy alloys (PH-HEAs). In this work, we systematically study the refractory solutes M (Hf, Nb, Ta, Mo, W, Re, Ru) diffusion in face-centered-cubic (FCC) NiCoFeCr lattice through a combination of first-principles calculations, diffusion couples, and coarsening of precipitates experiments. Our calculations reveal that there exists a stronger negative correlation between solute diffusivity and Young's modulus than between solute diffusivity and atomic size; i.e., the higher the Young's modulus, the more difficult solute diffusion is. Based on the electronic structure analysis, the underlying origins for such a relationship could be ascribed to the fact that solutes with high Young's modulus have stronger bonds with neighboring host atoms, less compressibility, and thus poor diffusivity. Afterwards, the main interdiffusion coefficients of three refractory elements with similar atomic sizes and increasing Young's modulus, Mo, W, and Re, at 1150°C in (NiCoFeCr)92Al3Ti3M2 are, in order of magnitude, , as determined by the diffusion-couple experiments. Further investigations on the coarsening kinetics of precipitates confirmed the additions of refractory elements improve the coarsening resistance of precipitates in the order of Re > W > Mo. The trends in the diffusivity determined by experiment and simulation are in excellent agreement. More importantly, the Young's modulus effect for the diffusion of refractory solutes in HEAs is also carefully analyzed and discussed. Our present findings will give new insights into future design of -strengthened HEAs for high-temperature structural applications.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.