Unexpected Young's modulus dependence of refractory solute diffusion in NiCoFeCr-based high entropy alloys

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-02-06 DOI:10.1016/j.jmst.2024.12.037
Haoyang Yu, Wei Fang, Tiexu Peng, Chang Liu, Hongxian Xie, Bin Gan, Xin Zhang, Jia Li, Fuxing Yin
{"title":"Unexpected Young's modulus dependence of refractory solute diffusion in NiCoFeCr-based high entropy alloys","authors":"Haoyang Yu, Wei Fang, Tiexu Peng, Chang Liu, Hongxian Xie, Bin Gan, Xin Zhang, Jia Li, Fuxing Yin","doi":"10.1016/j.jmst.2024.12.037","DOIUrl":null,"url":null,"abstract":"Diffusion of solutes significantly affects the coarsening rate of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates in precipitation-hardened high entropy alloys (PH-HEAs). In this work, we systematically study the refractory solutes M (Hf, Nb, Ta, Mo, W, Re, Ru) diffusion in face-centered-cubic (FCC) NiCoFeCr lattice through a combination of first-principles calculations, diffusion couples, and coarsening of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates experiments. Our calculations reveal that there exists a stronger negative correlation between solute diffusivity and Young's modulus than between solute diffusivity and atomic size; i.e., the higher the Young's modulus, the more difficult solute diffusion is. Based on the electronic structure analysis, the underlying origins for such a relationship could be ascribed to the fact that solutes with high Young's modulus have stronger bonds with neighboring host atoms, less compressibility, and thus poor diffusivity. Afterwards, the main interdiffusion coefficients of three refractory elements with similar atomic sizes and increasing Young's modulus, Mo, W, and Re, at 1150°C in (NiCoFeCr)<sub>92</sub>Al<sub>3</sub>Ti<sub>3</sub>M<sub>2</sub> are, in order of magnitude, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2DC;&lt;/mo&gt;&lt;/mover&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;MoMo&lt;/mtext&gt;&lt;/mrow&gt;&lt;mtext is=\"true\"&gt;Ni&lt;/mtext&gt;&lt;/msubsup&gt;&lt;mo linebreak=\"goodbreak\" is=\"true\"&gt;&amp;gt;&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2DC;&lt;/mo&gt;&lt;/mover&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;WW&lt;/mtext&gt;&lt;/mrow&gt;&lt;mtext is=\"true\"&gt;Ni&lt;/mtext&gt;&lt;/msubsup&gt;&lt;mo linebreak=\"goodbreak\" is=\"true\"&gt;&amp;gt;&lt;/mo&gt;&lt;msubsup is=\"true\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;D&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2DC;&lt;/mo&gt;&lt;/mover&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;ReRe&lt;/mtext&gt;&lt;/mrow&gt;&lt;mtext is=\"true\"&gt;Ni&lt;/mtext&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.586ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -1194.3 11266.5 1544.1\" width=\"26.167ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4D\"></use><use transform=\"scale(0.707)\" x=\"917\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1418\" xlink:href=\"#MJMAIN-4D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2335\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use></g></g></g><g is=\"true\" transform=\"translate(3439,0)\"><use xlink:href=\"#MJMAIN-3E\"></use></g><g is=\"true\" transform=\"translate(4495,0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-57\"></use><use transform=\"scale(0.707)\" x=\"1028\" xlink:href=\"#MJMAIN-57\" y=\"0\"></use></g></g></g><g is=\"true\" transform=\"translate(7383,0)\"><use xlink:href=\"#MJMAIN-3E\"></use></g><g is=\"true\" transform=\"translate(8440,0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(86,0)\"><use xlink:href=\"#MJMATHI-44\"></use></g><use is=\"true\" x=\"55\" xlink:href=\"#MJSZ2-2DC\" y=\"148\"></use></g><g is=\"true\" transform=\"translate(1056,626)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use><use transform=\"scale(0.707)\" x=\"750\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1056,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-52\"></use><use transform=\"scale(0.707)\" x=\"736\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1181\" xlink:href=\"#MJMAIN-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1917\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">MoMo</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo is=\"true\" linebreak=\"goodbreak\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">WW</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo is=\"true\" linebreak=\"goodbreak\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">ReRe</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">MoMo</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">WW</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup><mo linebreak=\"goodbreak\" is=\"true\">&gt;</mo><msubsup is=\"true\"><mover accent=\"true\" is=\"true\"><mi is=\"true\">D</mi><mo is=\"true\">˜</mo></mover><mrow is=\"true\"><mtext is=\"true\">ReRe</mtext></mrow><mtext is=\"true\">Ni</mtext></msubsup></mrow></math></script></span>, as determined by the diffusion-couple experiments. Further investigations on the coarsening kinetics of precipitates confirmed the additions of refractory elements improve the coarsening resistance of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span> precipitates in the order of Re &gt; W &gt; Mo. The trends in the diffusivity determined by experiment and simulation are in excellent agreement. More importantly, the Young's modulus effect for the diffusion of refractory solutes in HEAs is also carefully analyzed and discussed. Our present findings will give new insights into future design of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -846.5 845.9 1146.6\" width=\"1.965ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(551,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mi is=\"true\">γ</mi><mo is=\"true\">′</mo></msup></math></script></span>-strengthened HEAs for high-temperature structural applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion of solutes significantly affects the coarsening rate of γ precipitates in precipitation-hardened high entropy alloys (PH-HEAs). In this work, we systematically study the refractory solutes M (Hf, Nb, Ta, Mo, W, Re, Ru) diffusion in face-centered-cubic (FCC) NiCoFeCr lattice through a combination of first-principles calculations, diffusion couples, and coarsening of γ precipitates experiments. Our calculations reveal that there exists a stronger negative correlation between solute diffusivity and Young's modulus than between solute diffusivity and atomic size; i.e., the higher the Young's modulus, the more difficult solute diffusion is. Based on the electronic structure analysis, the underlying origins for such a relationship could be ascribed to the fact that solutes with high Young's modulus have stronger bonds with neighboring host atoms, less compressibility, and thus poor diffusivity. Afterwards, the main interdiffusion coefficients of three refractory elements with similar atomic sizes and increasing Young's modulus, Mo, W, and Re, at 1150°C in (NiCoFeCr)92Al3Ti3M2 are, in order of magnitude, D˜MoMoNi>D˜WWNi>D˜ReReNi, as determined by the diffusion-couple experiments. Further investigations on the coarsening kinetics of precipitates confirmed the additions of refractory elements improve the coarsening resistance of γ precipitates in the order of Re > W > Mo. The trends in the diffusivity determined by experiment and simulation are in excellent agreement. More importantly, the Young's modulus effect for the diffusion of refractory solutes in HEAs is also carefully analyzed and discussed. Our present findings will give new insights into future design of γ-strengthened HEAs for high-temperature structural applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nicofecr基高熵合金中难熔溶质扩散的意外杨氏模量依赖性
析出硬化高熵合金(PH-HEAs)中溶质的扩散对γ′γ′相的粗化速率有显著影响。本文通过第一性原理计算、扩散偶和γ′γ′相粗化实验,系统地研究了难熔溶质M (Hf, Nb, Ta, Mo, W, Re, Ru)在面心立方NiCoFeCr晶格中的扩散。我们的计算表明,溶质扩散率与杨氏模量之间存在比溶质扩散率与原子尺寸之间更强的负相关;即,杨氏模量越高,溶质扩散越困难。基于电子结构分析,这种关系的潜在起源可以归因于这样一个事实,即具有高杨氏模量的溶质与邻近的主原子有更强的键,更小的压缩性,因此较差的扩散率。然后,通过扩散偶实验确定,原子尺寸相近且杨氏模量增大的3种难熔元素Mo、W和Re在1150℃时在(NiCoFeCr)92Al3Ti3M2中的主要互扩散系数依次为:D ~ MoMoNi>;D ~ WWNi>D ~ ReReNiD ~ MoMoNi>D ~ WWNi>D ~ WWNi>;对析出相粗化动力学的进一步研究证实,耐火元素的加入提高了γ′γ′相的抗粗化能力,其强弱顺序为Re >;W比;实验和模拟所得的扩散系数变化趋势非常吻合。更重要的是,本文还仔细分析和讨论了难熔溶质在HEAs中扩散的杨氏模量效应。我们目前的研究结果将为未来设计用于高温结构应用的γ′γ′强化HEAs提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Deep learning-driven innovation in metallic materials: A comprehensive review on microstructure analysis, property prediction, and inverse design Manipulating multi-dimensional crystal defects for ultra-high superelastic stress and excellent shape memory effect in additively manufactured NiTiFe shape memory alloys Achieving magnesium alloy sheet isotropy via a multi-DoF forming process A bioinspired adhesive hydrogel tape enabling passive cooling and continuous electricity generation Nanostructure-specific tailoring engineering toward high-performance Ti-Ni diffusion bonding via Ni-Co co-deposition design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1