{"title":"AI-based quality assessment methods for protein structure models from cryo-EM","authors":"Han Zhu , Genki Terashi , Farhanaz Farheen , Tsukasa Nakamura , Daisuke Kihara","doi":"10.1016/j.crstbi.2025.100164","DOIUrl":null,"url":null,"abstract":"<div><div>Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, with an increasing number of structures being determined by cryo-EM each year, many at higher resolutions. However, challenges remain in accurately interpreting cryo-EM maps. Inaccuracies can arise in regions of locally low resolution, where manual model building is more prone to errors. Validation scores for structure models have been developed to assess both the compatibility between map density and the structure, as well as the geometric and stereochemical properties of protein models. Recent advancements have introduced artificial intelligence (AI) into this field. These emerging AI-driven tools offer unique capabilities in the validation and refinement of cryo-EM-derived protein atomic models, potentially leading to more accurate protein structures and deeper insights into complex biological systems.</div></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"9 ","pages":"Article 100164"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X25000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, with an increasing number of structures being determined by cryo-EM each year, many at higher resolutions. However, challenges remain in accurately interpreting cryo-EM maps. Inaccuracies can arise in regions of locally low resolution, where manual model building is more prone to errors. Validation scores for structure models have been developed to assess both the compatibility between map density and the structure, as well as the geometric and stereochemical properties of protein models. Recent advancements have introduced artificial intelligence (AI) into this field. These emerging AI-driven tools offer unique capabilities in the validation and refinement of cryo-EM-derived protein atomic models, potentially leading to more accurate protein structures and deeper insights into complex biological systems.