Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2024-11-01 DOI:10.1016/j.ijmst.2024.10.004
Chao Liu , Jiahao Zhang , Songwei Wu , Jinghua Qi , Beichen Yu , Liang Wang
{"title":"Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths","authors":"Chao Liu ,&nbsp;Jiahao Zhang ,&nbsp;Songwei Wu ,&nbsp;Jinghua Qi ,&nbsp;Beichen Yu ,&nbsp;Liang Wang","doi":"10.1016/j.ijmst.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Both bulk stress (<em>σ<sub>ii</sub></em>) and stress path (SP) significantly affect the transportation characteristics of deep gas during reservoir pressure depletion. Therefore, the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constant <em>σ<sub>ii</sub></em>-constraints is performed. The results show that coal permeability is affected by horizontal stress anisotropy (<em>σ</em><sub>H</sub>≠<em>σ</em><sub>h</sub>), and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain. The slippage phenomenon is prominent in deep high-stress regime, especially in low reservoir pressure. <em>σ<sub>ii</sub></em> and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity (<em>γ</em>) of permeability. Deep reservoir implies an incremental percentage of slip-based permeability, and SP weakens the slippage effect by changing the elastic–plastic state of coal. However, <em>γ</em> is negatively correlated with slippage effect. From the Walsh model, narrow (low aspect-ratio) fractures within the coal under unloading SP became the main channel for gas seepage, and bring the effective stress coefficient of permeability (<em>χ</em>) less than 1 for both low-stress elastic and high-stress damaged coal. With the raise of the effective stress, the effect of pore-lined clay particles on permeability was enhanced, inducing an increase in <em>χ</em> for high-stress elastic coal.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 11","pages":"Pages 1495-1508"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001538","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

Both bulk stress (σii) and stress path (SP) significantly affect the transportation characteristics of deep gas during reservoir pressure depletion. Therefore, the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constant σii-constraints is performed. The results show that coal permeability is affected by horizontal stress anisotropy (σHσh), and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain. The slippage phenomenon is prominent in deep high-stress regime, especially in low reservoir pressure. σii and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity (γ) of permeability. Deep reservoir implies an incremental percentage of slip-based permeability, and SP weakens the slippage effect by changing the elastic–plastic state of coal. However, γ is negatively correlated with slippage effect. From the Walsh model, narrow (low aspect-ratio) fractures within the coal under unloading SP became the main channel for gas seepage, and bring the effective stress coefficient of permeability (χ) less than 1 for both low-stress elastic and high-stress damaged coal. With the raise of the effective stress, the effect of pore-lined clay particles on permeability was enhanced, inducing an increase in χ for high-stress elastic coal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Multi-frequency formation mechanism and modulation strategy of self-priming enhanced submerged pulsed waterjet Study and application of the influence of inclination angle on the cross-fusion mechanism of high gas thick coal seam Dynamic damage characteristics and control mechanism of rocks anchored by constant resistance and energy absorption material Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways Theoretical and experimental study on high-entropy flotation of micro-fine cassiterite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1