Effects of nanostructuring on mechanical and tribological behaviors of FeCoNi medium-entropy alloy

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Transactions of Nonferrous Metals Society of China Pub Date : 2024-12-01 DOI:10.1016/S1003-6326(24)66651-3
Yan CHEN , Heng LI , Si-en LI , Gui-xun SUN , Liang ZHAO , Chao-quan HU , Wei ZHANG , Guo-dong TONG , Xue-gang CHEN , Shuang HAN , Hong-xiang ZONG , Jun LI , Jian-she LIAN
{"title":"Effects of nanostructuring on mechanical and tribological behaviors of FeCoNi medium-entropy alloy","authors":"Yan CHEN ,&nbsp;Heng LI ,&nbsp;Si-en LI ,&nbsp;Gui-xun SUN ,&nbsp;Liang ZHAO ,&nbsp;Chao-quan HU ,&nbsp;Wei ZHANG ,&nbsp;Guo-dong TONG ,&nbsp;Xue-gang CHEN ,&nbsp;Shuang HAN ,&nbsp;Hong-xiang ZONG ,&nbsp;Jun LI ,&nbsp;Jian-she LIAN","doi":"10.1016/S1003-6326(24)66651-3","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium- entropy alloy (MEA) were systematically investigated through nano-indentation and ball-on-disc wear tests. The results show that reducing the grain size down into the nano-meter regime, on the one hand, significantly elevates the hardness of the FeCoNi alloy, and on the other hand, facilitates the formation of a surface oxide layer. As a result, the wear rate of the nanocrystalline (NC) FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart. The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient. Such enhancement in tribological properties mainly stems from the improved strain hardening ability, owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 12","pages":"Pages 3963-3977"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666513","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium- entropy alloy (MEA) were systematically investigated through nano-indentation and ball-on-disc wear tests. The results show that reducing the grain size down into the nano-meter regime, on the one hand, significantly elevates the hardness of the FeCoNi alloy, and on the other hand, facilitates the formation of a surface oxide layer. As a result, the wear rate of the nanocrystalline (NC) FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart. The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient. Such enhancement in tribological properties mainly stems from the improved strain hardening ability, owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
期刊最新文献
Recycling technologies of spent lithium-ion batteries and future directions: A review Synergistic mechanism of metal ions and sodium N-oleoylsarcosinate on flotation separation of lepidolite from feldspar Microstructure evolution of 7050 aluminum forgings during surface cumulative plastic deformation Microstructure characteristics and corrosion behavior of metal inert gas welded dissimilar joints of 6005A modified by Sc and 5083 alloys In-situ Si particle-reinforced joints of hypereutectic Al−60Si alloys by ultrasonic-assisted soldering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1