Microstructure and mechanical properties of complex-shaped 7075 aluminium alloy prepared using modified polyoxymethylene-based feedstock

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Transactions of Nonferrous Metals Society of China Pub Date : 2024-12-01 DOI:10.1016/S1003-6326(24)66644-6
Heng ZOU, Meng-xiong CHEN, Yang FU, Hui-wen XIONG, Lei ZHANG, Ke-chao ZHOU
{"title":"Microstructure and mechanical properties of complex-shaped 7075 aluminium alloy prepared using modified polyoxymethylene-based feedstock","authors":"Heng ZOU,&nbsp;Meng-xiong CHEN,&nbsp;Yang FU,&nbsp;Hui-wen XIONG,&nbsp;Lei ZHANG,&nbsp;Ke-chao ZHOU","doi":"10.1016/S1003-6326(24)66644-6","DOIUrl":null,"url":null,"abstract":"<div><div>Additives of dioctyl phthalate (DOP), ethylene bis-stearomide (EBS), and epoxy (EP) were selected to modify the surface of 7075 Al alloy powder. Functional groups in DOP and EBS form hydrogen bonds with hydroxyl groups on the surface of Al powder. Additionally, the epoxy groups in the epoxy resin undergo ring-opening reactions with hydroxyl groups. The above interactions increased the compatibility between alloy powder and polyoxymethylene (POM). After sintering, samples containing DOP and EP presented high contents of C and O, while the part with EBS additive exhibited the lowest contents of 0.006 wt.% C and 0.604 wt.% O, respectively. Excessive C tends to accumulate at grain boundaries during sintering. Concurrently, excessive O causes secondary oxidation of aluminium alloy powder, inhibiting the sintering densification process. Therefore, the densities of the samples containing DOP and EP were only 85.52% and 79.01%, respectively. In contrast, using EBS as an additive, high-quality aluminium alloy parts were achieved, with a relative density of 97.64% and a tensile strength of 193 MPa.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 12","pages":"Pages 3862-3875"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666446","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Additives of dioctyl phthalate (DOP), ethylene bis-stearomide (EBS), and epoxy (EP) were selected to modify the surface of 7075 Al alloy powder. Functional groups in DOP and EBS form hydrogen bonds with hydroxyl groups on the surface of Al powder. Additionally, the epoxy groups in the epoxy resin undergo ring-opening reactions with hydroxyl groups. The above interactions increased the compatibility between alloy powder and polyoxymethylene (POM). After sintering, samples containing DOP and EP presented high contents of C and O, while the part with EBS additive exhibited the lowest contents of 0.006 wt.% C and 0.604 wt.% O, respectively. Excessive C tends to accumulate at grain boundaries during sintering. Concurrently, excessive O causes secondary oxidation of aluminium alloy powder, inhibiting the sintering densification process. Therefore, the densities of the samples containing DOP and EP were only 85.52% and 79.01%, respectively. In contrast, using EBS as an additive, high-quality aluminium alloy parts were achieved, with a relative density of 97.64% and a tensile strength of 193 MPa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Review: Efficacy of preventative interventions for children and adolescents at clinical high risk of psychosis – a systematic review and meta-analysis of intervention studies
IF 6.8 3区 医学Child and Adolescent Mental HealthPub Date : 2024-12-17 DOI: 10.1111/camh.12755
Grace Frearson, Javier de Otazu Olivares, Ana Catalan, Claudia Aymerich, Gonzalo Salazar de Pablo
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
期刊最新文献
Low-temperature pressureless consolidation of AlSi10Mg powders by low-intensity ultrasound Influence of high-temperature and short-time solution treatment on microstructure and properties of Al−Mg−Zn−Ag alloy First-principles study of physical properties of L12-Al3X structural phases for heat-resistant aluminum conductors Effect of pre-aged NiTi particle layer on phase-transition behavior and damping performance of 5052Al alloy Improving microstructure, tensile properties and corrosion resistance of AA6016 and AA2519 alloys friction stir lap joints via TIG arc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1