Highly compressible composite aerogel elastomers aided by FeCoNi alloys and carbon nanotubes for electromagnetic wave absorption and piezoresistive sensing

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2025-01-27 DOI:10.1016/j.compositesa.2025.108755
Luyao Ding , Quanxin Liu , Tianyi Hang , Youqiang Yao , Shaohua Jiang , Yiming Chen , Jiajia Zheng
{"title":"Highly compressible composite aerogel elastomers aided by FeCoNi alloys and carbon nanotubes for electromagnetic wave absorption and piezoresistive sensing","authors":"Luyao Ding ,&nbsp;Quanxin Liu ,&nbsp;Tianyi Hang ,&nbsp;Youqiang Yao ,&nbsp;Shaohua Jiang ,&nbsp;Yiming Chen ,&nbsp;Jiajia Zheng","doi":"10.1016/j.compositesa.2025.108755","DOIUrl":null,"url":null,"abstract":"<div><div>To eliminate the increasing threats to human health and environmental safety posed by electromagnetic radiation, it is necessary to develop high performance and functionally integrated absorbers with superior mechanical performances. Herein, a 3D porous biomass cellulose nanofibril-based composite aerogel elastomer was first fabricated and encapsulated by Ecoflex, which was assisted by highly conductive carbon nanotubes and electromagnetic-functional carbon-shell iron-cobalt–nickel alloys with N-doped carbon. The resulting composite elastomer demonstrated excellent flexibility, high resilience, and fatigue-resistant compression. Additionally, the inclusion of Ecoflex provided tunable dielectric properties and abundant heterogeneous interfaces, enabling effective electromagnetic wave attenuation. It achieved a minimum reflection loss of −57 dB, corresponding to a super-wide effective absorption bandwidth of 7.41 GHz. Also, the enhanced elasticity endowed the aerogel elastomer with an effective piezoresistive sensing capability for sensitive and stable human motion monitoring. This unique strategy will provide new opportunities for broadening the application scenarios of functionally integrated composite elastomers.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"191 ","pages":"Article 108755"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

To eliminate the increasing threats to human health and environmental safety posed by electromagnetic radiation, it is necessary to develop high performance and functionally integrated absorbers with superior mechanical performances. Herein, a 3D porous biomass cellulose nanofibril-based composite aerogel elastomer was first fabricated and encapsulated by Ecoflex, which was assisted by highly conductive carbon nanotubes and electromagnetic-functional carbon-shell iron-cobalt–nickel alloys with N-doped carbon. The resulting composite elastomer demonstrated excellent flexibility, high resilience, and fatigue-resistant compression. Additionally, the inclusion of Ecoflex provided tunable dielectric properties and abundant heterogeneous interfaces, enabling effective electromagnetic wave attenuation. It achieved a minimum reflection loss of −57 dB, corresponding to a super-wide effective absorption bandwidth of 7.41 GHz. Also, the enhanced elasticity endowed the aerogel elastomer with an effective piezoresistive sensing capability for sensitive and stable human motion monitoring. This unique strategy will provide new opportunities for broadening the application scenarios of functionally integrated composite elastomers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Iron nitrate nonahydrate (Fe(NO3)3·9H2O)
阿拉丁
Hydrochloric acid (HCl)
阿拉丁
Polyvinylpyrrolidone (PVP, K30)
阿拉丁
Cobalt nitrate hexahydrate (Co(NO3)2·6H2O)
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Novel two-scale network structured (TiBw + Ti2Cu)/Ti6Al4V composites: Design, microstructure, mechanical properties and fracture behavior Effect on the Joule heating properties of porous C/C composites by the addition of different types of carbon Effect of methods for micro-fillers dispersion in-between plies on fatigue performance of thermoplastic composites Development of Eco-Friendly synergistic intumescent flame retardants for enhanced thermal stability and fire resistance of biomass TPU composites Rapid fatigue life estimation of drilled CFRP laminates and titanium stacks using thermography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1